

North Bay Seismic Design PO Box 55, Inverness, California 94937 Tel/Fax: (415) 663-8161 www.NorthBaySeismicDesign.com

NORTH BAY SEISMIC DESIGN BRIEF COMPANY OVERVIEW + SAMPLE WORK - BUILDING DESIGN

Table of Contents

Company Overview	Page 3
NBSD Software Library - Sample Work	Page 5
Sample Work - Steel Design	Page 6
Eccentric Braced Frames (EBF)	Page 7
Special Concentric Braced Frames (SCBF)	Page 12
Special Moment Resistant Frames (SMRF)	Page 14
Column Base Plate Design	Page 16
Sample Work - Concrete Design	Page 19
RC Shear Walls	Page 20
RC SMRF's	Page 23
RC Strong Connections	Page 31
Sample Work - Wood Design	Page 35
Multi Story Lateral Force Distribution	Page 36
Shear Wall Design	Page 39
Sample Work - Foundation Design	Page 45
Wood Frame Wall Footing	Page 46
SMRF Footing (Fixed Column Base)	Page 62
Sample Work - ASCE 7-10 EQ Loads	Page 66
EQ - Seismic Design Category	Page 67
EQ - Base Shear & Force Distribution	Page 69
Sample Work - ASCE 7-10 Wind Loads	Page 72

North Bay Seismic Design PO Box 55, Inverness, California 94937 Tel/Fax: (415) 663-8161 www.NorthBaySeismicDesign.com

BRIEF COMPANY OVERVIEW

www.NBSD-Software.com

PROFESSIONAL SERVICES - CAPABILITY STATEMENT

North Bay Seismic Design (NBSD) is a single person Micro SB (established 2009) which works on analysis and design of bridge and building structures in earthquake regions (or the software tools to do the work), and provides the following professional services:

- Evaluation and retrofit of existing **Building** or **Bridge** structures.
- Design of new **Building** or **Bridge** structures.
- Design of Earth Retaining Systems.
- Implementation of Capacity Based Design methodologies as adopted into design criteria (Caltrans, BART, IBC, ASCE, AISC, etc) into construction documents.
- Reliable analytical evaluation of structural systems as required (soil structure interaction, system deformations, etc) to determine seismic behavior and response.
- Independent verification/ Peer Review of design/retrofit construction documents.

Sample Projects:

- 1914 Labor Council Union Hall, 2940 16th Street, San Francisco (Redstone Bldg): Performed retrofit (analysis, design, detailing, drawings) of exterior 2' thick URM brick walls facing two streets, doweled to new 8" perforated interior full height ductile RC Shear Walls in existing 4-5 story steel frame historic building (2022).
- Misc Soft Story Retrofits: Performed analysis and design of nearly 100 3-4 story buildings (Tiers 1,2, 3) with ground level soft stories in San Francisco (2015-2023).
- Doyle Drive Replacement: Worked on the Independent Check of 1,200' of retaining walls of various heights, supported by closely spaced CIDH piles and various tieback arrangements, immediately adjacent to US 101 between two tunnel segments leading to the Golden Gate Bridge (2009).
- *Berryessa BART Station:* Project engineer (as employee) for the design of elevated concrete Guideway (bridge) and separate isolated two-story steel frame Station building (2 separate phases). Developed elastic analysis finite element models and performed lateral load analysis and member sizing/selection; helped assemble construction drawings for project (2006).

North Bay Seismic Design has the following **Certifications**:

- BART Micro Small Business Entity, Certification No. 1040
- State of California Micro Small Business, Certification No. 1263640

UNSPSC Codes:

81101505 Professional Engineering Services – Civil Engineering – Structural Engineering

81102502 Professional Engineering Services – Building consent and permit engineering review

72101500 Building Facility Maintenance and Repair Services

Key Words :

Structural, Bridge, Building, Earthquake, Seismic, Evaluation, Analysis, Retrofit, New Design, Steel, Concrete, Timber, Lateral, Force, Resisting, System, LFRS, Footings, Foundations, Walls, Shear Walls, Columns, Beams, Calculations, Drawings, Details.

The sample work provided in this document are mostly a snapshot or two of individual software tools (Excel) for various projects or examples. The Page number out of number of pages is provided at the bottom of each document, as is the name/ description of the software tool used.

For Steel and Concrete, the sample work provided are unrelated from one page to the next, one or two pages per Lateral Force Resisting System (LFRS) shown.

For Timber, the sample work provided shows EQ force distribution down a LFRS Gridline (one of 3 or 4 in each perpendicular direction) and a glimpse of the design process resulting in the Shearwall Schedule (Table of Elements and Connections).

For Foundations, part of the design process is shown for two LFRS (timber shear wall and steel Special Moment Resisting Frame) in separate LFRS Gridlines in one project.

For Earthquake (EQ) loads, the Seismic Design Category (SDC) and determination of EQ Forces for a building project are shown.

For Wind Loads, snapshots of 4 different ASCE 7-10 Wind Load procedures are shown, unrelated from one page to the next and for different buildings and wind speed regions.

The software tools provided are also a snapshot of the overall NBSD Software Library to display to a limited extent the capabilities for building design.

North Bay Seismic Design PO Box 55, Inverness, California 94937 Tel/Fax: (415) 663-8161 www.NorthBaySeismicDesign.com

SAMPLE WORK - STEEL

The sample work provided is unrelated from one page to the next, one or two pages per Lateral Force Resisting System (LFRS) or component as follows:

- Eccentrically Braced Frame (EBF)
- Special Concentrric Braced Frame (SCBF)
- Special Moment Resisting Frame (SMRF)
- Base Plate Design

EBF - BEAM OUTSIDE OF LINK DESIGN (AISC 341-10 EXAMPLE 5.4.3) ECCENTRICALLY BRACED FRAME (EBF) AISC 341-10 SEISMIC DESIGN MANUAL PROVISIONS - SECTION F3

Loading Direction : N-S Floor Level : 3

N_S: 4 (Total Number of Stories)

1. Brace Geometry Data

Seismic Data:

				_
$\delta_{xe} =$	0.175	inches (Interstory Drift from Elastic analysis)		
C _d =	4.0	Deflection Amplification Factor (ASCE Table 12.2-1)		
1=	1.00	Importance Factor (ASCE Table 11.5-1)		
Brace Geom	etry:			
a =	4.00	feet (Link Length)		
L =	30.00	feet	Ê	
H =	12.50	feet (Story Height)	it (ir	
Connection I	Data:		eigh	
			Т	
n =	4	(No. Bolts)		
D =	1.00	inches (Bolt Diameter)		
L _e =	2.50	inches (Bolt Edge Distance)		
$S_L =$	3.50	inches (Bolt Spacing - Longitudinal)	-5	0
S _T =	3.50	inches (- Transverse)		
L _s =	0.50	inches (Brace-Gusset PL Separation Distance)		

EBF - BEAM BEYOND LINK

2. Member Selection

Note: AISC database properties obtained for AISC section chosen.

	Columns]
	Left	Right	
	W14x99	W14x99	
A _c	29.10	29.10	in^2
d	14.20	14.20	in
tw	0.49	0.49	in
bf	14.60	14.60	in
tf	0.78	0.78	in
rx	6.17	6.17	in
ry	3.71	3.71	in
K	1.38	1.38	in
K ₁	1.44	1.44	
Т	10.00	10.00	in
Zxc	173.00	173.00	in^3

	Rea	1	
	Link Bottom		
	W16x77	W16x77	
A _b	22.60	-	
d _b	16.50	16.50	in
tw _b	0.46	0.46	in
bf _b	10.30	10.30	in
tf _b	0.76	0.76	in
rx _b	7.00	7.00	in
ry _b	2.47	2.47	in
К	1.16	1.16	in
K1	1.06	1.06	
Т	13.25	13.25	in
Zx _b	150.00	150.00	in^3
lx	1,110	-	in^4

	Br		
	Braces	Connector	
	W10x112	WT8x28.5	
A _{br}	32.90	8.39	in^2
d _{br}	11.40	8.22	in
t _{des} /t _{wb}	0.76	0.43	in
b_{br}/b_{fb}	10.40	7.12	in
tf _b	1.25	0.72	in
rx _{br}	4.66	2.41	in
r _{ybr}	2.68	1.60	in
lx	716	-	in^4

Material Properties (Seismic Design Manual as referenced)

E =	29000	ksi
-----	-------	-----

70 ksi

Fex =

Columns Beams Braces Platess A992, Gr. A572, Gr. A572, Gr. A572, Gr Туре 50 50 50 50 F_v (ksi) (F_v min specified, AISC 360-05 Table 2-3, pg 2-40) 50 50 50 36 (Fu stress specified, AISC 360-05 Table 2-3, pg 2-40) F_u (ksi) 65 65 65 58 Ry (Ratio of Expected F_y to min F_y specified; SDM Table I-6-1) 1.10 1.10 1.10 (Ratio of Expected F_u to min F_u specified; SDM Table I-6-1) Rt 1.10 1.10 1.10

3. Member and System Demands

Beam Outside of Link - Unfactored

	Dead	Live	Snow	EQ	
Р	1.0	0.7		105.0	Kips
V	6.8	4.8		8.7	Kips
М	17.0	11.3		113.0	Kip-f

Seismic Parameters:

$\Omega_0 =$	2.00	Overstrength Factor (ASCE Table 12.2-1)
--------------	------	---

 $\rho = \qquad 1.30 \qquad \text{Redundancy Factor} \ (\text{ASCE Section} \ 12.3.4)$

SDC = D Seismic Design Category (ASCE 7-05 Section 11.4)

 $S_{DS} = 1.000$ g's (Site Design Coefficient - Short Period)

EBF LINK DESIGN (AISC 341-10 EXAMPLE 5.4.2) ECCENTRICALLY BRACED FRAME (EBF) AISC 341-10 SEISMIC DESIGN MANUAL PROVISIONS - SECTION	I F3	EBF - LINK - CONT
Loading Direction : N-S Floor Level : 3 N _S : 4	(Total Number of Stories)	
	(
15. Stiffener Requirements - at Ends of Link		Link Beam Elevation
a) Stiffeners at Ends of Link (at brace flanges)	dad full danth stiffeners	
at each end of the link.	dea, iuir-aepin stineners	20
$W_{min} = 0.5 (b_f - 2 t_w)$ Where $b_f = 10.30$ t = 0.46	inches	
v _w − 0.+0	inches	
W _{min} = 4.70 inches (Minimum required wi	idth)	
$t_{min} = 0.75 t_w \ge 3/8" \qquad \qquad \text{Where } t_w = 0.46$	inches	Бір 20
t _{min} = 0.341 inches (Minimum required th	ickness)	
Use Full-depth, 0.38" x 4.75" Stiffeners on both sides of the we link segment.	eb at each end of the	
10 Stiffener Berningmente Intermediate Diate Specing and Siz		Length (in)
 a) Links of lenoth 1.6 M_e/V_p or less: 	<u>es</u>	Quick Check:
i) for link rotation angle = 0.08 radians	S = 30 t., d/5	Where tw = 0.46 inches Use AISC 341-05 Table 3-1 for EBF Link
, C	S - 10.25 inchos	d = 16.50 inches Design values for shape selected (Link End and Intermediate Stiffeners).
ii) for link rotation angle ≤ 0.02 radians	$S = 52 t_w - d/5$	Where tw = 0.46 inches
	S = 20.36 inches	d = 16.50 inches
iii) for Link Rotation Angle calculated at Plastic Story Dril	ft	
S = 19.32 inches (Stiffener	spacing) Where y	γ _p = 0.026 radians (at Plastic Story Drift)
b) 2.6 Mp/Vp \leq Links of lengths \leq 5.0 Mp/Vp		
$d_{link} = 1.5 b_f = 15.45$ inches (distance from	each end of link)	Where b _f = 10.30 inches
c) Other Link Requirements		
<u>Note:</u> - for 1.6 $M_p/V_p \le Links$ of lengths $\le 2.6 M_p/V_p$, Links sha	all be provided with intermediate S	Stiffeners meeting requirements of (a) and (b) above;
 for Links of lengths ≥ 5.0 M_p/V_p, intermediate Links ar Intermediate web Stiffeners shall be Full-depth; 	e not required;	
 For links < 25", Stiffeners are only required on <u>one sic</u> 	de of the Link web.	Note: d _{link} = 16.50 inches (Link depth)
		Stiffeners only required on ONE side of Link
d) Intermediate Stiffener Plates - Required Spacing	LinkLongth	Maximum Allowed Link Rotation
a = 48.00 inches (Link Length - Provided)	Condition (feet) (inches	Vs. Link Length
a _b = 36.68 inches (Balanced Strength Ratio)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	5.0 a _b 15.28 183.3	39 윤 能 0.07 · · · · · · · · · · · · · · · · · · ·
<u>Note: a ≤ 1.6 Mp/Vp_:</u>		
Thus S = 19.32 inches (Stiffener spacing - Max) d _{link} = 0.00 inches (distance from each end o	of Link - Max)	
		0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 e, Link Length (feet)
$W_{min} = 0.5 \ b_{f} \ - \ t_{w} \qquad \qquad Where \ b_{f} = 10.30 \text{inches} \\ t_{w} = 0.46 \text{inches}$		
W _{min} = 4.70 inches (Minimum	required width)	Clip Dimensions (Seismic Design Manual Section 7.5)
. <u></u>		$L_{cx} = K_1 + 0.50^{"}$ where $K_1 = 1.06$ in
$t_{min} = t_w \ge 3/8"$ Where $t_w = 0.46$ inches		L - 156 in
t _{min} = 0.455 inches (Minimum	required thickness)	
19.32		$L_{cy} = K + 1.50^{\circ}$ where $K = 1.16$ in
Use Full-depth, 0.50" x 4.75" Stiffeners on ONE Side of the we	eb at each end of the	$L_{cy} = 2.66$ in
Maximum Stiffener Spacing S = 19.32"; Use 2 Plates with Inte 16.24" oc.	rmediate Spacing =	

Project	SE Exam 2018
Job No.	201799.10
Ву	AL
Date	11/29/17
Sheet	of

6B. Connections to Link Flanges

EBF BRACE-TO-LINK CONNECTION DESIGN (AISC 341-10 EXAMPLE 5.4.6) ECCENTRICALLY BRACED FRAME (EBF) AISC 341-10 SEISMIC DESIGN MANUAL PROVISIONS - SECTION F3

EBF - BRACE - LINK CONN

a) Check Min and Max Size of Fillet Weld AISC 350-10 Table J2.4 Thinner 0.76 inches between tf = 0.76 inches Min Size of Fillet t_{min} = Part t min and $t_{PL} = 0.88$ inches (Plate) (inches) t_w min (inches) t_w min= 0.313 inches (Table J2.4) < 1/4" 1/8" 0.125 tw max= 0.698 inches (Section J2.2b) 3/16" 0.188 1/4"< t < 1/2 1/4" 0.250 1/2"< t < 3/4" > 3/4" 5/16 0.313 b) LRFD Weld Strength - to Link Flanges ea Plate $R_n = \ \varphi \ F_W \ A_W = \varphi \ (0.6 \ F_{ex}) \ (0.707 \ t_W \ n_W \ L_W)$ Where Fex = 70 ksi (Weld Strength) 4 Number of welds n_w = $L_w = b - L_{cx} =$ 3.19 inches (Length of Ea weld) and b = 4.75 inches $L_{cx} =$ 1.56 inches 5/16 3/8 7/16 1/2 9/16 5/8 11/16 3/4 tw D (n/16") (Number of 1/16") 6 7 8 9 10 11 12 Rn/L 6.96 8.35 9.74 11.14 12.53 13.92 15.31 16.70 (Weld Strength/inch/weld) (kips/inch) 89 106 124 142 160 177 195 Rn (kips) 213 5/16 inches 89 Use t_w = Rn = kips OK, >Min, < Max OK, Rn > Ps -5 Use Double-sided 3/16" welds at Link Web, Double-sided 5/16" welds at Link Flanges, Typ Г 7. Brace Web Connection

inches

inches (Section J2.2b)

tw min= 0.188 inches (Table J2.4)

between t_f = 0.76

t_w = 0.46

t_{Pl} = 0.38

inches

inches

inches (Plate)

Brace-to-Link Connection			
15			
=			
5			
ght (in)			
Hei			
-15			
-25 Length (in)			

AISC 350-10 Table J2.4			
Thinner			
Part	Min Size of Fillet		
t		t min	
(inches)	t _w min	(inches)	
< 1/4"	1/8"	0.125	
1/4"< t < 1/2"	3/16"	0.188	
1/2"< t < 3/4"	1/4"	0.250	
> 3/4"	5/16	0.313	

AISC 350-10 S	Section J2.2b
Max Size	of Fillet
t (inches)	t., min
< 1/4"	t
> 1/4"	t - 1/16"

t_w max= 0.313 ii) LRFD Weld Strength

t_{min} = 0.38

 $\mathsf{R}_{\mathsf{n}} = \varphi \; \mathsf{F}_{\mathsf{W}} \mathsf{A}_{\mathsf{W}} = \varphi \; (0.6 \; \mathsf{F}_{\mathsf{ex}}) \; (0.707 \; \mathsf{t}_{\mathsf{W}} \; \mathsf{n}_{\mathsf{W}} \; \mathsf{L}_{\mathsf{W}})$ Where Fex = 70 ksi (Weld Strength) n_w = 1 Number of welds L = 6.00 inches (Length of Ea weld) 3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8 tw D (n/16") 4 6 8 9 10 5 Rn/L (kips/inch) 4 18 5 57 6.96 8 35 9 74 11 14 12.53 13.92 Rn (kips) 25 33 42 50 58 67 75 84 Use t_w = 3/8 inches Rn = 50 kips OK, Rn OK - M Vu Use 3/8 " x 4.0" x 6.0" plate as Brace Web connection

with 3/8 "Single sided fillet welds to Link flance

COLUMN DESIGN (AISC 341-10 EXAMPLE 5.3.3) SPECIAL CONCENTRIC BRACED FRAME AISC 341-10 SEISMIC DESIGN MANUAL PROVISIONS - SECTION F2

4

a) AISC 341-10 Section F2.3 - Mechanism Analysis

Loading Direction : N-S Floor Level :

4. Factored Loads on Column

N_s: 4 (Total Number of Stories)

SCBF - ANALYSIS

Special Concentric Braced Frame - Elevation

Braces Тор Bottom Center ISS6.875X0 HSS7.500 HSS6X0.312 500 0 500 5.22 10.30 Abr 9.36 in dbr 6.00 6.88 7.50 in $t_{\rm des}/t_{\rm wb}$ 0.29 0.47 0.47 in b_{br}/b_{fb} 0.31 0.50 0.50 tfb 0.00 0.00 0.00 rx_{br} 2.02 2.27 2.49 in 2.02 2.27 2.49 r_{ybr} in Height (in) Expected Brace Strength Levels - AISC 341-10 Section F2.3 - Analysis $L_{EO} =$ 2.85 feet (Brace End Offsett - EA End) HSS6.875X0. HSS7.500X HSS6X0.312 500 0.500 350 $R_v F_v A_{br} =$ 307 550 606 Kips (Tensile Strength) $L_b =$ 11.98 11.98 11.98 feet (Brace Length - 2 L_{EO}) KL/r =71.2 63.3 57.7 (Slenderness Ratio) $F_e =$ 57 71 86 Ksi (Euler Stress) 1 R_y F_{cr} = 38 42 44 Ksi (Compressive Stress) 150 1.14 $R_y F_{cr} A_g =$ Kips (Compressive Strength) 226 444 518 Kips (Post-Buckling Strength) 0.3 [1.14 R_y F_{cr} A_g] = 68 133 156 Length (in) b) AISC 341-10 Section F2.3 - Mechanism Analysis P_M = Sum of Brace Horizontal components Compression in Column Tension in Column Kips (Brace Capacity - Top in Tension) Where P_{U1} = 226 Kips (Brace Capacity - Top ir = $(P_{U1} \sin \theta_1 + P_{U2} \sin \theta_2 + P_{U3} \sin \theta_3)$ Where $P_{U1} = 307$ $\theta_1 = 45.34$ degrees (member angle) $\theta_1 = 45.34$ degrees (member angle) Kips (Brace Capacity - Center in Compression) Kips (Brace Capacity - Cente = 307 * 0.71 + 444 * 0.70 + 606 * 0.71P_{U2} = 444 P_{U2} = **550** $\theta_2 = 44.65$ degrees (member angle) $\theta_2 = 44.65$ degrees (member angle) P_{U3} = 518 Kips (Brace Capacity - Bottor P_{U3} = 606 Kips (Brace Capacity - Bottom in Tension) = 218 + 312.4 + 428.3 $\theta_3 = 45.00$ degrees (member angle) $\theta_3 = 45.00$ degrees (member angle) P_C = 959 Kips $P_T =$ 914 Kips c) AISC 341-10 Section F2.3 Exception 2 (a) - Basic Combinations for Strength Design w/ Overstrength Factor (ASCE 7-10 Section 12.4.3.2) i) Axial Compression $P_{U} = (1.2 + 0.2 \ S_{DS}) \ P_{D} + \Omega \ P_{EQ} + 0.5 \ P_{L} + 0.2 \ P_{S}$ Where $P_D = 147.0$ Kips (Dead Load) Overstrength Factor (ASCE Table 12.2-1) $\Omega = 2.0$ P_L = 60.0 Kips (Live Load) S_{DS} = 1.000 g's (Site Design Coefficient - Short Period) $P_{s} = 7.0$ Kips (Snow Load) $P_E = Min (P_M, P_{EQ})$ Where P_M = 959 Kips P_{EQ} = 248.0 Kips (from analysis) P_E = 248.0 Kips P_U = 733.2 kips ii) Axial Tension $T_U = (0.9 - 0.2 S_{DS}) P_D + \Omega P_{EQ} + 1.6 P_H$ Where $P_D = 147.0$ Kips (Dead Load) Overstrength Factor (ASCE Table 12.2-1) $\Omega = 2.0$ $S_{DS} = 1.000$ g's (Site Design Coefficient - Short Period) P_H = 0.0 Kips (Lateral Load) $P_{F} = Min (P_{M}, P_{FO})$ Where P_M = 914 Kips $P_{EQ} = 248.0$ Kips P_E = -248.0 Kips T_U = -393.1 kips

X BEAM DESIGN (AISC 341-10 EXAMPLE 5.3.4) SPECIAL CONCENTRIC BRACED FRAME AISC 341-10 SEISMIC DESIGN MANUAL PROVISIONS - SECTION F2				SCBF - ME	MBER DESIGN
Loading Direction : N-S Floor Level : 4 N _S : 4 (Total	Number of Stories)			
d) AISC 341-10 Section F2.3 Exception 2 (a) - Basic Combinations for Str	renath Design (AS	CE 7-1	0 Section 12.4.2.3)		
i) Axial Force Demands					
$P_{U} = (1.2 + 0.2 S_{DS}) P_{D} + P_{EQ} + 0.5 P_{L} + 0.2 P_{S}$	Where $P_D =$	0.00	Kips (Dead Load)		
	P _L =	0.00	Kips (Live Load)*	S _{DS} = 1.000	g's (Site Design Coefficient - Short Period)
	P _s =	0.00	Kips (Snow Load)		
$P_{11} = 111.4$ kins	P _{EQ} =	111.4	Kips		
ii) Shear Force Demands					
$V_{II} = (1.2 + 0.2 S_{DS}) V_D + V_{FQ} + 0.5 V_I + 0.2 V_S$	Where $V_D =$	11.2	Kips (Dead Load)		
	V _L =	8.5	Kips (Live Load)*	S _{DS} = 1.000	g's (Site Design Coefficient - Short Period)
	V _s =	0.0	Kips (Snow Load)		
	$V_E =$	64.3	Kips		
V _U = 84.3 kips					
iii) Flexural Demands					
$M_U = (1.2 + 0.2 S_{DS}) M_D + M_{EQ} + 0.5 M_L + 0.2 M_S$	Where M _D =	120.0	Kip-ft (Dead Load)	0	
	M _L =	100.0	Kip-ft (Live Load)*	$S_{DS} = 1.000$	g's (Site Design Coefficient - Short Period)
	IVI _S =	0.0	Kip-It (Show Load)		
Mu = 1.022 kip-ft	$IVI_{EQ} = IVI_{u} =$	804	кір-п		
7. Required Axial Strength of Beam - Summary					
a) Beam Demands - Braces at Capacities in Tension and Compression	b) Beam Dem	nands -	Compression Braces	at Post-Yield Capacities	c) Beam Demands - Governing
$P_{U} = 166.4 \text{ kips}$	P _U =	111.4	kips		$P_{U} = 166.4$ kips
$V_{\rm U} = 29.3$ kips	V _U =	84.3	kips		$V_{\rm U} = 84.3$ kips
M _U = 335 κιρ-π	M _U =	1,022	кір-п		$M_{\rm U} = 1022.1$ klp-ft
8. Beam Slenderness Check					
Note: AISC 341-10 Section F3.5b states that Beams shall meet require	rements of Section	D1.1 fo	or Moderately Ductile	e elements.	
a) Flange Width-thickness Ratio - Actual (AISC 341-10 Table D1.1).				b	
$\lambda_{f} = \ b_{f} \ / \ (2 \ t_{f}) \qquad \qquad \text{Where} \ b_{f} = \ 10.10 \text{inches}$	5			and the second	Quick Check:
t _f = 0.93 inches	5			t	
$\lambda_{\rm f} = 5.43$					Use AISC 341-10 Table 1-3 for SCBF
b) Flange Width-thickness Ratio - Moderately Ductile Member					requirements.
$\lambda_{\rm mdf} = 0.38 (E/F_{\rm w})^{0.5}$ (AISC 341-10 Table D1.1) Where	E - 29.000 K	ei			
	$F_v = 50$ Ks	si		hunner	
$\lambda_{hdf} = 9.15$ OK					
Limiting b/t Ratios OK for Flanges					
a) Width thickness Patie for Web Actual (AISC 241 10 Table D1 1)					
c) Width-thickness hallo for Web - Actual (AISC 341-10 Table DT.T.).					h t
$\lambda_{\rm w} = h/t_{\rm w}$ Where h = d - 2 K = 24.2	24 inches				······································
t _w = 0.5	7 inches				
$\lambda_{\rm w} = 42.53$ 35.88395					·
d) Limiting Width-thickness Ratio for Web in Flexural/Axial Compression - M	Ioderately Ductile	Memb	ers		
i) Axial Load Ratio $C_a = P_u / (\phi_b P_y) = P_u / (\phi_b F_y A_y)$	A _g) (AISC 341-	10 Tab	e D1.1)	Where $P_u = 166.4$	kips
				$\phi_{\rm b} = 0.90$	(AISC 350-10 Section E1)
				F _y = 50	ksi
C _a = 0.1104				A _g = 33.50	in^2
ii) Low Axial Loading $\lambda_{\rm bdw} = 3.76 (E/F_v)^{0.50} (1 - 2.75 C)$	C_a) for $C_a \le 0.1$	25		Where E = 29,000	Ksi
				F _y = 50	Ksi
				C _a = 0.110	
$\lambda_{\rm hdw} = 63.$	1 (Controls!)				
iii) Axial Loading - All other cases $\lambda_{hdw} = 1.12 (E / F_v)^{0.50} (2.33 - C_a)^{0.50}$) ≥ 1.49 (E/F _v)	0.50	for $C_a \ge 0.125$	Where E =	29,000 Ksi
	,,			F _v =	50 Ksi
. <u></u>				C _a =	0.110
$\lambda_{\rm hdw} = 59.$	9				
	$\lambda_{hdw} =$	63.1	ок		
		Lin	- hiting b/t Ratios OK 1	for Web	1
	<u> </u>		WF Section satisfies	s Seismic b/t Ratio for M	oderately Ductile Beam
	<u>н</u>				

SMF REDUCED BEAM SECTION BEAM DESIGN (AISC 341-10 EXAMPLE 4.3.3) SPECIAL MOMENT FRAME DESIGN 2010 AISC SEISMIC DESIGN MANUAL PROVISIONS - SECTION E

SMRF - RBS BEAM

D

1. Member Selection and Moment Frame Column Geometry

Girder Data:

S =	30.00	feet (Girder Span)
$L_{trib} =$	12.50	feet (" Tributary Width))

SMF Members

		Girc	lers		-
	Column	Left	Right	Beam Bracing	
	W14x176	W24x76	W24x76	L5x5x7/16	
Α	51.80	22.40	22.40	4.18	in ²
d	15.20	23.90	23.90	-	in
tw	0.83	0.44	0.44	-	in
b _f	15.70	8.99	8.99	5.00	in
t _f	1.31	0.68	0.68	0.44	in
r _x	6.43	9.69	9.69	1.54	in
r _y	4.02	1.92	1.92	1.54	in
К	1.91	1.18	1.18	-	in
K1	1.63	1.06	1.06	-	in
Т	10.00	20.75	20.75	-	in
Z _x	320	200	200	-	in³
l _x	2,140	2,100	2,100	-	in⁴

RBS Beam Designed:

Note: Both girders shown (if selected), only one checked; default is Left girder.

76

Material Properties (Seismic Design Manual as referenced)

E = 29,000 ksi

	Beams	Angle Bracing	
Туре	A572, Gr. 50	A36	
F _y (ksi)	50	36	(F
F _u (ksi)	65		(F
Ry	1.10		(R
Rt	1.10		(R

y min specified, AISC 360-10 Table 2-4, pg 2-48)

u stress specified, AISC 360-10 Table 2-4, pg 2-48)

Ratio of Expected F_y to min F_y specified; AISC 341-10 Table A3.1)

Ratio of Expected F_u to min F_u specified; AISC 341-10 Table A3.1)

i aramotor	Lon Doam	Beam	
а	5.50	5.50	
(inches)	OK	OK	
b	18.00	18.00	
(inches)	OK	OK	
С	2.00	2.00	
(inches)	OK	OK	
R (inches)	21.25	21.25	

AISC 358-10 Section 5.3.1 - Beam Limitations :										
	Limit	Member								
d =	36.00	23.9	inches (Beam Depth)							
Weight =	300	76	Plf (Beam weight)							
t _f =	1.75	1.31	inches (Flange thickness							
Span-Depth Ratio =	7.0	14.4								
	Note:	W24x76	Beam OK							

Where R = $(b^2/4 + c^2) / 2c$

	Reduced Beam Section	1				
		Left	Beam	Right	Beam	
Parameter	Limits	Lower	Upper	Lower	Upper	
		(inches)	(inches)	(inches)	(inches)	
а	0.50 b _{bf} ≤ a ≤ 0.75 b _{bf}	4.50	6.74	4.50	6.74	(AISC 358-10 Eq. 5.8-
b	0.65 d ≤ b ≤ 0.85 d	15.54	20.32	15.54	20.32	(AISC 358-10 Eq. 5.8-2
С	0.10 b _{bf} ≤ c ≤ 0.25 b _{bf}	0.90	2.25	0.90	2.25	(AISC 358-10 Eq. 5.8-3

2. Member and System Demands

Girder Demands - Unfactored

					_
	Dead	Live	Snow	EQ	
V	13.0	9.0		16.0	Kips
М	63.0	45.0		235.0	Kip-ft

Seismic Parameters:

Ω _o =	3.0	Overstrength Factor (ASCE Table 12.2-1)
ρ =	1.00	Redundancy Factor (ASCE Section 12.3.4)
SDC =	D	Seismic Design Category (ASCE 7-05 Section 11.4)
S _{DS} =	1.000	g's (Site Design Coefficient - Short Period)

35

BASE PLATE DESIGN - FLEXURE

COLUMN BASE PLATE WITH LARGE MOMENT LRFD APPROACH - AISC 360-05 AND STEEL DESIGN GUIDE 1 (SDG-1) 1251 8TH AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

1. Parameters

$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \displaystyle \begin{array}\\l} \displaystyle \begin{array}{l} \displaystyle \begin{array}\\ \displaystyle \begin{array}\\l\\ \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \displaystyle \begin{array} \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \displaystyle \begin{array} \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\ \displaystyle \begin{array}\\$									
$ \begin{aligned} h_{1}^{h} &= 8.28 \text{inches} (\text{Wide Flange - Midth}) \\ h_{2}^{h} &= 0.94 \text{inches} (\text{Wide Flange - Midth}) \\ h_{3}^{h} &= 10.70 \text{in}^{h} (\text{Wide Flange - Area}) \\ h_{4}^{h} &= 2.50 \text{Kol} \\ \hline \\ $	Column: W8x67	= >	d = 9.00	00 inches (Wide	Flange - Depth)		Large Mom	ent Base Pla	ate Design
			b _f = 8.28	8 inches (Wide	Flange - Width)				
$ \begin{array}{c} \zeta_{+} & 70.1 \text{in}^{2} (\text{Wide Flange - Plastic Section}) \\ A_{-} & 19.70 \text{in}^{2} (\text{Wide Flange - Area}) \\ F_{7} & 50 \text{Ks} \\ \hline \\ $			t _f = 0.94	4 inches (Wide	Flange - Thickne	ss)	-20 -15 -10 -5 0	5 10 15	20 25 30 35
$\begin{array}{c} A = 19.70 \ \text{in}^{2} (Wide Flange - Area) \\ F_{1} = 50 \ \text{Kal} \\ \hline \\ $			Z _x = 70.1	.1 in ³ (Wide Fla	ange - Plastic Sec	tion)			
$F_{1} = 50 \text{ Ksi}$ $\underline{\text{Bulls:}} D_{0} = 1.50 \text{ inches (Bot Diamster)}$ $N_{u} = 2.00 \text{ inches (Bot Diamster)}$ $N_{u} = 4 \text{ ((kumber of Bots - Longitudia1-Max 7)}$ $N_{u} = 4 \text{ ((s-rransverse - ''))}$ Grade of Bots - 55 Ksi (Grade 36, 55, or 105) $q_{*} = 2.00 \text{ inches (Gatano From bot C, to edge of Plato)}$ $\underline{\text{AISC 380-10 Table 14-2 Recumments:}}$ $\text{Min Washer Size = 3.50 \text{ inches}}$ $Min Washer Size = 7.70.1 \text{ in}^{10} (Wiofe Plange - Plastic Section)$ $F_{p} = 50 \text{ Ksi}$ $Min Washer Size = 1.00 \text{ foreords}}$ $Material Properties:$ $Inti Size : N = (6.00 \text{ inches (Base Plate - Longth)}$ $U_{2} = (3.52 \text{ Kg})$ $Material Properties:$ $\frac{1.25 \text{ for uncracked concrete}}{1.0 \text{ Otherwise}}$			A = 19.7	70 in ² (Wide Fla	nge - Area)		10		
$ \begin{array}{c} \underline{Pols:} & D_{h} = 1.50 inches (Bot Embedment \ W Washer) \\ & N_{h} = 2.400 inches (Bot Embedment \ W Washer) \\ & N_{h} = 4 ((\ \ W mbre f Bot Longluidinal Max 7) \\ & Grade of Bot = 1.55 Ks \; (Grade 36, 55, or 105) \\ & d_{s} = 2.00 inches \; (distance from bot C_{L} bedge of Pate) \\ & \underline{Mis} \; Max \; Hole Diameter 2.31 inches \\ & Min \; Washer \; Tisckness 10.20 inches \; Size 2.30 inches \\ & Min \; Washer \; Tisckness 2.30 inches \\ & Min \; Washer \; Tisckness 2.30 inches \\ & Min \; Washer \; Tisckness 2.30 inches \\ & Min \; Washer \; Tisckness 2.30 inches \\ & Min \; Washer \; Tisckness 2.30 inches \\ & Min \; Washer \; Tisckness 2.50 inches \\ & Min \; Washer \; Tisckness 2.50 inches \\ & Min \; Washer \; Tisckness 2.50 inches \\ & Mus \; 10.50 inches \; GasePlate Vinches 1.50 Compression, - is Tension \\ & M_{v} = 2.629 Kisl \\ & M_{v} = 2.629 Kisl \\ & N_{v} = 1.25 (Acl 318:08 \mathsf{Appendix DS2.5; \\ & Cast \; inpace Anchors, \\ & \mathsf{1.50 \; formers \; (Rase Plate \mathsf{Length) \\ & V_{v} = 2.25 K \; isi \\ & OK \\ & N_{v} = 2.30 ief \; (foundation \mathsf{Length) \\ & V_{v} = 1.25 (Acl 318:08 Appendix Concrete, \\ & 1.50 \; formers \; (Rase Plate \mathsf{Assibe M \; Se \; M \; Se \; M \; Se \; M \; Se \; M \; \mathsf{M$			F _y = 50) Ksi					
$ \begin{split} h_u &= 24.00 \text{ inches (Bot Embedment w/ Washer)} \\ h_u &= 24.00 \text{ inches (Dot Embedment w/ Washer)} \\ h_u &= 2.00 \text{ inches (Datame from bol C_ to edge of Plate)} \\ \hline Grade of Bot &= 55 \text{ Ksi (Grade 38, 55, or 105)} \\ d_u &= 2.00 \text{ inches (distance from bol C_ to edge of Plate)} \\ \hline All CS 280-10 Table 14-2 Requirements : \\ Max Hole Diameter &= 2.31 \text{ inches} \\ Min Washer Thickness &= 3.50 \text{ inches} \\ Min Washer Thickness &= 3.50 \text{ inches} \\ Min Washer Thickness &= 0.50 \text{ inches} \\ Min Washer Thickness &= 0.50 \text{ inches} \\ \hline Mu &= 75\% of Column Floxural Capacity \\ &= 0.75 Z, F_v \qquad Where Z_v = 70.1 \text{ in}^n (Wide Flange - Plastic Section) \\ F_v &= 30 \text{ Kgip} \qquad (+ is Compression, - is Tension) \\ M_v &= 75\% of Column Floxural Capacity \\ &= 0.75 Z, F_v \qquad Where Z_v = 70.1 \text{ in}^n (Wide Flange - Plastic Section) \\ F_v &= 50 \text{ Kgi} \\ \hline M_v &= 2.629 \text{ Kip-in} \\ \hline Base Plate Dimensions: \\ Lading is the sector in the se$	Bolts: D _B =	1.50	inches (Bolt Dian	meter)					
$\begin{split} & \underset{N_{H^{+}}}{N_{H^{+}}} = \frac{4}{4} (\text{Number of Bots - Longitudinal - Max 7}) \\ & \underset{N_{H^{+}}}{N_{H^{+}}} = \frac{4}{4} (\text{Number of Bots - Longitudinal - Max 7}) \\ & \underset{N_{H^{+}}}{N_{H^{+}}} = \frac{4}{4} (\text{Number of Bots - Longitudinal - Max 7}) \\ & \underset{N_{H^{+}}}{N_{H^{+}}} = \frac{4}{4} (\text{Number of Bots - Longitudinal - Max 7}) \\ & \underset{N_{H^{+}}}{N_{H^{+}}} = \frac{2.31}{10} \text{inches} (\text{Bistance from bot C_1 to edge of Plate)} \\ & \underset{M_{H^{+}}}{\text{Max Hole Diameter}} = 2.31 \text{inches} \\ & \underset{M_{H^{+}}}{\text{Max Hole Diameter}} = 2.31 \text{inches} \\ & \underset{M_{H^{+}}}{\text{Max Hole Diameter}} = 0.50 \text{inches} \\ & \underset{M_{H^{+}}}{\text{Mom Washer Thickness}} = 0.50 \text{inches} \\ & \underset{M_{H^{+}}}{\text{Mom Washer Thickness}} = 0.50 \text{inches} \\ & \underset{M_{H^{+}}}{\text{Mom Washer Thickness}} = 0.50 \text{inches} \\ & \underset{M_{H^{+}}}{\text{Mom Vasher Thickness}} = 0.50 \text{Kpl} \\ & M_{H^{+$		h _{ef} =	24.00 inches	s (Bolt Embedmer	nt w/ Washer)			0000	
$N_{gr} = 4 (\ " \ - Transverse \ - \)$ Grade of Boht = 55 Ksi (Grade 36, 55, or 105) $d_{v} = 2.0$ Grade of Boht = 55 Ksi (Grade 36, 55, or 105) $d_{v} = 2.0$ Max Hole Diameter = 2.31 inches Mn Washer Size = 3.50 inches Mn Washer Size = 3.50 inches Mn Washer Thickness = 0.50 inches Mn Washer Size = 3.50 inches Mn Washer Size = 3.50 inches Mn Washer Size = 7.0.1 in ² (Wide Flange - Plastic Section) $F_{v} = 50$ Ksi $M_{v} = 75\% \text{ of Column Flexural Capacity} = 0.75 Z_{v} F_{v}$ Where $Z_{v} = 70.1$ in ² (Wide Flange - Plastic Section) $F_{v} = 50$ Ksi $M_{v} = 2.629$ Kip-in Base Plate Dimensions: $Material Properties:$ $Trial Size : t_{v} = 50.0 \text{ Koi}$ N = 1.600 inches (Base Plate - Length) $G_{v} = 0.75$ (Acl 318-08 Appendix D5.2.5 ; Cast in place Anchors, A = 2.88 in ² (Area of Concrete Support) $F_{v} = 3.00$ feet (foundation Length) $W_{v} = 3.00$ feet (foundation Width) $H_{v} = 2.50$ feet (foundation Width) $H_{v} = 2.50$ feet (foundation Dispendix) G_{v} Design Parameters: $\Phi_{v} = 0.75$ (ACl 318-08 Appendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Parameters: Heappendix D.2.3 ; Anchor capacities reduced by 0.75 in Section Para	N _{BL} =	4	(Number of Bolts	s - Longitudinal - N	Max 7)				
Grade of Bolt = 55 Ksi (Grade 38, 55, or 105) d. = 2.00 inches (distance from bolt G, to edge of Plate) AISC 380-10 Table 14-2 Requirements: Max Hole Diameter = 2.31 inches Min Washer Size = 3.50 inches Min Washer Size = 3.50 inches Min Washer Thickness = 0.50 inches Loadion: Sms = 1.10 g's (Site Design Coefficient - Short Period) Pu = 30 Kps (+ is Compression, - is Tension) Mu = 7.5%, of Column Flexural Capacity = 0.75 Z, F, Where Z, = 70.1 in ³ (Wide Flange - Plastic Section) $F_y = 50$ Kgi Mu = 2.628 Kip-in Base Plate Dimensions: $I_{c} = 50$ Kgi N = 16.00 inches (Base Plate - Length) oK B = 18.00 inches (Base Plate - Length) GK B = 10.00 inches (Base Plate - Length) GK E = 0.05 (ACI 318-08 Appendix D.2 3.1 Anchor capacities reduced by 0.75 in Semi Realows) GK E = 0.75 (ACI 318-08 Appendix D.2 3.3 inchor capacities reduced by 0.75 in E = 0.75 (ACI 318-08 Appendix D.2 3.3 inchor capacities reduced by 0.75 in E = 0.75 (ACI 318-08 Appendix D.2 3.3 inchor capacities reduced by 0.75 in E = 0.75 (ACI 318-08 Appendix D.2 3.3 inchor	N _{BT} =	4	("	- Transverse	- ")		-10	0 0	
$d_{s} = 2.00 \text{ inches (distance from bolt C_{t} to edge of Plate)}$ $AlsC 360:10 Table 14-2 Requirements :$ $Max Hole Diameter = 2.31 \text{ inches}$ $Min Washer Thickness = 0.50 \text{ inches}$ $Mu Washer Thickness = 0.50 \text{ inches}$ $S_{00} = \frac{1.10}{9} \text{ g's (Site Design Coefficient - Short Period)}$ $P_{U} = 30 \text{ Kips} (+ \text{ is Compression, - is Tension)}$ $M_{U} = 75\% \text{ of Column Flexural Capacity}$ $= 0.75 \text{ Z, F, } \qquad \text{Where Z_{s} = 70.1 \text{ in}^{3} (Wide Flange - Plastic Section)}$ $F_{r} = 50 \text{ Ksi}$ $Mu = 16.00 \text{ inches (Base Plate - Length)}$ $Table 21.Base Plate Materials$ $\frac{1}{9} = \frac{50.00}{0} \text{ Ksi}$ $B = 18.00 \text{ inches (Base Plate - Length)}$ $R_{s} = 1.25 \text{ (ACI 318-06 Appendix D5.2.6;}$ $\frac{1}{1.0 \text{ Otherwise}}$ $\frac{1}{1.0 Other$	Grad	e of Bolt =	= <mark>55 </mark> Ksi (0	(Grade 36, 55, or ⁻	105)				
$\frac{\text{AISC 360-10 Table 14-2 Bequirements:}}{\text{Max Hole Diameter = 2.31 inches}}$ $\frac{\text{Max Washer Size = 3.50 inches}}{\text{Min Washer Size = 3.50 inches}}$ $\frac{\text{Loading:}}{\text{Min Washer Thickness = 0.50 inches}}$ $\frac{\text{Loading:}}{\text{Mu = 75\% of Column Flexural Capacity}}$ $= 0.75 \text{Z, } \text{F, } \qquad \text{Where } \text{Z, } = 70.1 \text{ in}^3 \text{ (Wide Flange - Plastic Section)}$ $\frac{\text{F}_{7} = 50 \text{ Kgi}}{\text{Mu = 2.629 Kp:in}}$ $\frac{\text{Base Plate Dimensions:}}{\text{Material Properties:}}$ $\frac{\text{L}_{7} = 50.00 \text{ Kai}}{\text{OK}}$ $\frac{\text{R}_{7} = 50.00 \text{ Kai}}{\text{OK}}$ $\frac{\text{R}_{7} = 50.00 \text{ Kai}}{\text{OK}}$ $\frac{\text{R}_{7} = 50.00 \text{ Kai}}{\text{OK}}$ $\frac{\text{L}_{7} = 3.25 \text{ Ksi}}{\text{OK}}$ $\frac{\text{L}_{7} = 4.00 \text{ inches (Base Plate - Length)}{\text{OK}}$ $\frac{\text{L}_{7} = 50.00 \text{ Kai}}{\text{Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise}$ $\frac{\text{L}_{7} = 4.00 \text{ freet (foundation Length)}}{\text{OK}}$ $\frac{\text{L}_{7} = 4.00 \text{ freet (foundation Length)}}{\text{OK}}$ $\frac{\text{L}_{7} = 4.00 \text{ freet (foundation Length)}}{\text{OK}}$ $\frac{\text{Design Parameters:}}{\text{Max Eration Dimensions}}$ $\frac{\text{L}_{7} = 0.65 \text{ (AISC 360-10 Section J8; Bearing)}}{\text{R}_{8} = 0.70 \text{ (AIC) 318-08 Appendix D.4.4 : Concrete Breakout Strength - Pullout or Pryout)}$ $\frac{\text{R}_{9} = 0.75 \text{ (AIC) 318-08 Appendix D.4.4 : Concrete Breakout Strength - Pullout or Pryout)}$ $\frac{\text{R}_{9} = 0.75 \text{ (AIC) 318-08 Appendix D.4.3 : Anchor capacities reduced by 0.75 \text{ in } \text{Simi Rase Plate Appendix D.5.4 \text{ in } \text{AC} \text{ in } \text{AC} \text{ in } $	d _e =	2.00	inches (distance	e from bolt C_L to eq	dge of Plate)		-20		
$\begin{array}{c} \text{Max Hole Diameter = 2.31 inches} \\ \text{Min Washer Size = 3.50 inches} \\ \text{Min Washer Thickness = 0.50 inches} \\ \hline \\ \hline \\ \text{Leadinc:} \\ \hline \\ S_{05} = 1.10 \text{ gs} (Site Design Coefficient - Short Period) \\ P_{0} = 30 \text{ Kips} (+ is Compression, - is Tension) \\ \hline \\ M_{0} = 7.5\% of Column Flexural Capacity \\ = 0.75 Z, F_{y} \qquad \text{Where } Z_{z} = 70.1 \text{ in}^{3} (Wide Flange - Plastic Section) \\ \hline \\ F_{y} = 50 \text{ Ksi} \\ \hline \\ \hline \\ \hline \\ \textbf{Mu} = 2.629 \text{ Kip-in} \\ \hline \\ \hline \\ \textbf{Base Plate Dimensions:} \\ \hline \\ \textbf{Mu} = 2.629 \text{ Kip-in} \\ \hline \\ \textbf{Base Plate Dimensions:} \\ \hline \\ \textbf{Mu} = 2.629 \text{ Kip-in} \\ \hline \\ \textbf{Base Plate Dimensions:} \\ \hline \\ \textbf{Mu} = 2.629 \text{ Kip-in} \\ \hline \\ \textbf{Base Plate Dimensions:} \\ \hline \\ \textbf{Mu} = 2.629 \text{ Kip-in} \\ \hline \\ \textbf{Base Plate Dimensions:} \\ \hline \\ \textbf{Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D5.2.6); \\ Cast in place Anchors, 1.25 (ACI 318-08 Appendix D4.2); Correte Brakout Strength - Pullout or Pryout) \\ W_{v} = 3.00 \text{ feet (foundation Length)} \\ W_{v} = 3.00 \text{ feet (foundation Length)} \\ W_{v} = 0.5 \text{ feet (foundation Dimesions)} \\ \mathbf{Mu} = 0.70 (ACI 318-08 Appendix D.4.4; Concrete Brakout Strength - Pullout or Pryout) \\ \Psi_{v_{0}} = 0.75 (ACI 318-08 Appendix D.4.4; Concrete Brakout Strength - Pullout or Pryout) \\ \Psi_{v_{0}} = 0.75 (ACI 318-08 Appendix D.4.4; Concrete Brakout Strength - Pullout or Pryout) \\ \Psi_{v_{0}} = 0.75 (ACI 318-08 Appendix D.4.4; Concrete Brakout Strength - Pullout or Pryout) \\ \Psi_{v_{0}} = 0.75 (ACI$	AISC 360	-10 Table	14-2 Requirement	<u>nts :</u>			-20		
$ \begin{array}{c} \mbox{Min Washer Size = 3.50 inches} \\ \mbox{Min Washer Thickness = 0.50 inches} \\ \hline \end{tabular} \\ \mbox{Song = 1.10 gs (Site Design Coefficient - Short Period) \\ \mbox{Pu = 30 Kips (+ is Compression, - is Tension) \\ \mbox{Mu = 75% of Column Flaxual Capacity = 0.75 Z, F_{\mu} Where Z, = 70.1 in3 (Wide Flange - Plastic Section) \\ \mbox{F_{\mu} = 50 Ksi} \\ \hline \mbox{Mu = 2.629 Kip-in} \\ \hline \end{tabular} \\ \mbox{Mu = 2.629 Kip-in} \\ \hline \end{tabular} \\ \hline \en$	Ν	/lax Hole I	Diameter = 2.31	1 inches			-25		
Min Washer Thickness = 0.50 inches Loading : Sos = 1.10 g/s (Site Design Coefficient - Short Period) Pu = 30 Kips (+ is Compression, - is Tension) Mu = 75% of Column Flexural Capacity = 0.75 Z, F _y Where Z _x = 70.1 in ³ (Wide Flange - Plastic Section) F _y = 50 Ksi Mu = 2.829 Kip-in Base Plate Dimensions: Trial Size : N = 16.00 inches (Base Plate - Length) OK B = 18.00 inches (Base Plate - Length) C = 3.25 Ksi B = 18.00 inches (Base Plate - Length) C = 3.25 Ksi B = 18.00 inches (Base Plate - Length) C = 3.25 Ksi C = 1 place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise) Foundation Dimensions: L _x = 4.00 feet (foundation Length) W _x = 3.00 feet (foundation Length) W _x = 3.00 feet (foundation Length) W _x = 3.00 feet (foundation Dight) OK Design Parameters: $\oint_{x} = 0.65$ (AISC 360-10 Section J8; Bearing) $\oint_{x_0} = 0.75$ (AISC 380-200 Rest Of A.4 ; Concrete Breakout Strength - Pullout or Pryout) $\oint_{x_0} = 0.75$ (AISC 380-300 Appendix D3.3 ; Anchor capacities reduced by 0.75 in sessing Regions)		Min Was	her Size = 3.50	inches			20		
Loading : $S_{05} = \frac{1.10}{9} \text{ g's (Site Design Coefficient - Short Period)}$ $P_{0} = \frac{30}{9} \text{ Kips} (+ \text{ is Compression, - is Tension)}$ $M_{0} = 75\% \text{ of Column Flexural Capacity} = 0.75 Z_{x} F_{y} \text{ Where } Z_{x} = 70.1 \text{ in}^{3} \text{ (Wide Flange - Plastic Section)}$ $F_{y} = 50 \text{ Kgi}$ $M_{0} = \frac{2,629 \text{ Kip-in}}$ Base Plate Dimensions: $Trial Size: f_{y} = 50.0 \text{ Ksi}$ $M_{0} = \frac{2,629 \text{ Kip-in}}{0 \text{ K}}$ $R = \frac{16.00}{0} \text{ inches (Base Plate - Length)}$ $f_{c} = 3.25 \text{ Ksi}$ $R_{c} = 288 \text{ in}^{2} (\text{Area of Concrete Support)}$ 1.0 Otherwise $L_{r} = \frac{4.00}{0} \text{ feet (foundation Length)}$ $W_{r} = \frac{3.00}{0} \text{ feet (foundation Length)}$ $W_{r} = \frac{4.00}{0} \text{ feet (foundation Depth)}$ OK $Design Parameters:$ $\varphi_{n} = \frac{0.55}{0.00} \text{ (AISC 360-10 Section J8; Bearing)}$ $\varphi_{n} = \frac{0.75}{0.00} (ACI 318-08 Appendix D.3.3; Anchor capacities reduced by 0.75 in section $	Min	Washer T	hickness = 0.50	inches			-30		
$ \begin{array}{c} S_{05} = 1.10 grs \ (Site Design Coefficient - Short Period) \\ P_{0} = 30 Kips (+ is Compression, - is Tension) \\ M_{U} = 75\% \ of Column Flexural Capacity \\ = 0.75 \ Z, \ F_{y} \qquad Where Z_{x} = 70.1 in^{3} \ (Wide Flange - Plastic Section) \\ F_{y} = 50 Ksi \\ \hline M_{U} = 2.629 Kip-in \\ \hline M_{U} = 2.629 Kip-in \\ \hline \hline $	Loading :								
$P_{0} = 30 \text{ Kips} (+ \text{is Compression, - is Tension})$ $M_{U} = 75\% \text{ of Column Flexural Capacity} = 0.75 \text{ Z, } F_{y} \text{ Where } Z_{x} = 70.1 \text{ in}^{3} \text{ (Wide Flange - Plastic Section)}$ $F_{y} = 50 \text{ Ksi}$ $M_{u} = 2.629 \text{ Kip-in}$ Base Plate Dimensions: $\frac{1}{F_{y}} = 50.00 \text{ Ksi}$ $f_{y} = 50.00 \text{ Ksi}$ $f_{v} = 3.25 \text{ Ksi}$ $R = 18.00 \text{ inches (Base Plate - Length)}$ $f_{v} = 3.25 \text{ Ksi}$ $R = 18.00 \text{ inches (Base Plate - Length)}$ $F_{v} = 1.25 (ACI 318-08 Appendix D5.2.6; Cast in place Anchors, Cast in the Ast in Ast in Ast in Ast in Ast in $	S _{DS} =	1.10	g's (Site Design	n Coefficient - Sho	rt Period)				
$ \begin{array}{l} M_{U} = 75\% \text{ of Column Flexural Capacity} \\ = 0.75 \text{ Z}, F_{y} \qquad \text{Where } Z_{x} = 70.1 \text{in}^{3} \text{ (Wide Flange - Plastic Section)} \\ \hline F_{y} = 50 Ksi \\ \hline \texttt{M}_{u} = 2,629 Kip-in \end{array} \\ \hline \begin{array}{l} \textbf{Base Plate Dimensions:} \\ \hline \texttt{M}_{u} = 2,629 Kip-in \end{array} \\ \hline \begin{array}{l} \textbf{Base Plate Dimensions:} \\ \hline \texttt{M}_{u} = 2,629 Kip-in \end{array} \\ \hline \begin{array}{l} \textbf{Base Plate Dimensions:} \\ \hline \texttt{M}_{u} = 2,629 Kip-in \end{array} \\ \hline \begin{array}{l} \textbf{Base Plate Dimensions:} \\ \hline \texttt{M}_{u} = 16.00 \text{inches (Base Plate - Length)} \\ \texttt{OK} \end{array} \\ \hline \texttt{OK} \end{array} \\ \hline \texttt{OK} \end{array} \\ \hline \begin{array}{l} \textbf{B} = 18.00 \text{inches (Base Plate - Length)} \\ \texttt{OK} \end{array} \\ \hline \texttt{OK} \end{array} \\ \hline \begin{array}{l} \textbf{A} \text{STM } A38 \text{ M} \text{A25M } A38 \text{ M} \text{A27 } A38 \text{ M} \text{A37M } A38 \text{ M} \text{A38M } \text{M} \text{A37M } A38 \text{ M} \text{A38M } \text{M} \text{A37M } A38 \text{ M} \text{A38M } \text{A37M } A38 \text{ M} \text{A38M } \text{A37M } A38 \text{ M} \text{A38M } \text{A37M } A38 \text{ M} \text{A37M } A38 \text{ M} \text{A37M } A38 \text{ M} \text{A38M } \text{A37M } A38 \text{ M} \text{A38M } \text{A37M } \text{A38M } \text{ M} \text{M} \text{withous Dimensions:} \\ L_{F} = 4.00 \text{feet (foundation Length)} \\ W_{F} = 3.00 \text{if et (foundation Depth)} \\ OK \end{array} $ Design Parameters: \\ \oint_{e} = 0.65 (\text{AISC 360-10 Section J8; Bearing)} \\ \oint_{e_{e_{e_{e}}} = 0.70 (ACI 318-08 Appendix D.3.3; Anchor capacities reduced by 0.75 \text{ in selimins Facility of the transfer to the t	P _U =	30	Kips (+is	Compression, - is	s Tension)				
$ \begin{array}{c} = 0.75 \ Z_{v} \ F_{y} \\ \hline Where \ Z_{v} = 70.1 \ in^{3} \ (Wide \ Flange - Plastic \ Section) \\ \hline F_{y} = 50 \ Ksi \\ \hline M_{u} = 2.629 \ Kip-in \\ \hline \\ $	M _U =	75% of (Column Flexural Ca	Capacity					
$F_{y} = 50 \text{ Ksi}$ $\boxed{M_{u} = 2,829 \text{ Kip-in}}$ $\boxed{\text{Base Plate Dimensions:}} \qquad $	=	0.75 Z _x F	- v	Where Z _x =	70.1 in ³ (Wide	Flange -	Plastic Section)		
Material Properties:Trial Size :Material Properties:Trial Size :f y = 50.00KsiN =16.00inches (Base Plate - Length) $f_c = 3.25$ KsiB =18.00inches (Base Plate - Width) $\Psi_3 = 1.25$ (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)Thickness (f_a)Plate AvailabilityFoundation Dimensions: $L_F =$ 4.00feet (foundation Length) $\Psi_3 = 1.25$ (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise) Ψ in $< f_b \le 6$ in.ASTM A588 Gr 42 or 50Foundation Dimensions: $L_F =$ 4.00feet (foundation Length) $\Psi_F = 3.00$ feet (foundation Depth) OKOkDesign Parameters : $\Phi_0 =$ 0.65(AISC 360-10 Section J8; Bearing) $\Phi_{cb} =$ 0.70(ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout) $\Phi_{cb} =$ 0.75(ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)Seismic Regions)				F _v =	50 Ksi				
Base Plate Dimensions: Material Properties: Trial Size : $f_y = 50.00$ Ksi N = 16.00 inches (Base Plate - Length) $f_c = 3.25$ Ksi OK B = 18.00 inches (Base Plate - Width) $\Psi_3 = 1.25$ (ACI 318-08 Appendix D5.2.6); Cast in place Anchors; A2 = 288 in ² (Area of Concrete Support) 1.0 Otherwise) 1.0 Otherwise) 4 In. < $t_p \le 6$ In. ASTM A58 Gr 42 or 50 Foundation Dimensions: L _F = 4.00 feet (foundation Length) $H_F = 2.50$ feet (foundation Depth) W _F = 3.00 feet (foundation Depth) OK Network the second th		M _U =	2,629 Kip-in	1					
Trial Size :fy = 50.00KsiTable 2.1. Base Plate MaterialsThickness (t_{ab}) inches (Base Plate - Length)f = 50.00KsiTable 2.1. Base Plate MaterialsOKSign (t_{ab}) inches (Base Plate - Length)f = 3.25KsiThickness (t_{ab})Plate MaterialsThickness (t_{ab})Plate AvailabilityOKSign (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 Eps 6 in.ASTM A588 Gr 42 or 50 ASTM A	Base Plate Dimensi	ons:			Material P	roperties:			
$N = 16.00 \text{ inches (Base Plate - Length)} f_{c} = 3.25 \text{ Ksi}$ $B = 18.00 \text{ inches (Base Plate - Width)} = 1.25 \text{ (ACI 318-08 Appendix D5.2.6;} \\ OK = 288 \text{ in}^{2} (Area of Concrete Support) = 1.25 \text{ (ACI 318-08 Appendix D5.2.6;} \\ Cast in place Anchors, \\ 1.25 \text{ for uncracked concrete,} \\ 1.0 \text{ Otherwise}) = 1.20 \text{ (ACI 318-08 Appendix D5.2.6;} \\ Cast in place Anchors, \\ 1.25 \text{ for uncracked concrete,} \\ 1.0 \text{ Otherwise}) = 1.20 \text{ (ACI 318-08 Appendix D5.2.6;} \\ W = 3.00 \text{ feet (foundation Length)} \\ W_{F} = 3.00 \text{ feet (foundation Length)} \\ W_{F} = 2.50 \text{ feet (foundation Width)} \\ H_{F} = 2.50 \text{ feet (foundation Depth)} \\ OK \\ \hline Design Parameters : \\ \phi_{c} = 0.65 \text{ (AISC 360-10 Section J8; Bearing)} \\ \phi_{cb} = 0.70 \text{ (ACI 318-08 Appendix D.4.4; Concrete Breakout Strength - Pullout or Pryout)} \\ \phi_{EO} = 0.75 \text{ (ACI 318-08 Appendix D.3.3; Anchor capacities reduced by 0.75 in Seiming)} \\ \hline \end{array}$	Trial Size	:			f _v =	50.00	Ksi	Table 2.1. E	Base Plate Materials
$I_{F} = 18.00 \text{ inches (Base Plate - Width)} \qquad \Psi_{3} = 1.25 \text{ (ACI 318-08 Appendix D5.2.6;} \\ OK \\ A_{2} = 288 \text{ in}^{2} (Area of Concrete Support) \qquad 1.0 \text{ Otherwise}) \qquad I_{2} = 5 \text{ for uncracked concrete,} \\ I_{2} = 1.0 \text{ (foundation Length)} \\ W_{F} = 3.00 \text{ feet (foundation Length)} \\ W_{F} = 3.00 \text{ feet (foundation Width)} \\ H_{F} = 2.50 \text{ feet (foundation Depth)} \\ OK \\ Design Parameters: \\ \phi_{b} = 0.65 \text{ (AISC 360-10 Section J8; Bearing)} \\ \phi_{cb} = 0.70 \text{ (ACI 318-08 Appendix D.3.3; Anchor capacities reduced by 0.75 in Seismic Regions)} \\ Hard Strate Strate$	N =	16.00	inches (Base Pla	ate - Length)	, f'a =	3 25	Ksi	Thickness (t _p)	Plate Availability
$B = 18.00 \text{ inches (Base Plate - Width)} \qquad \Psi_3 = 1.25 \text{ (ACI 318-08 Appendix D5.2.6 ; } Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)} \qquad 4 \text{ In.} < t_p \le 6 \text{ In.} \qquad ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 or 50 ASTM A578 Gr 42 Or 50 ASTM A578 ASTM A578 ASTM A578 Gr 42 Or 50 ASTM A578 Gr 42 Or 50 ASTM A578 AS$	1 4 –	OK			°с —	0.20		$t_p \le 4$ in.	ASTM A36 ^[a] ASTM A572 Gr 42 or 50
$A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Support}) $ $A_{2} = 288 \text{ in}^{2} (\text{Area of Concrete Breakout Strength - Pullout or Pryout}) $ $\Phi_{E0} = 0.75 \text{ (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)} $	B =	18.00	inches (Base Pla	ate - Width)	Ψ ₃ =	1.25	(ACI 318-08 Appendix D5.2.6 ;	$4 \text{ in } < t_{-} < 6 \text{ in }$	ASTM A588 Gr 42 or 50 ASTM A36 ^[A]
Foundation Dimensions: $t_p > 6$ ln. ASTM A36 Image: L_F = 4.00 feet (foundation Length) Image: L_F = 4.00 feet (foundation Width) W_F = 3.00 feet (foundation Depth) feet (foundation Depth) Image: L_F = K Design Parameters : ϕ_b 0.65 (AISC 360-10 Section J8; Bearing) Image: L_F = K ϕ_{cb} 0.70 (ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout) Image: L_F = K K ϕ_{EQ} 0.75 (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions) K K	A ₂ =	288	in ² (Area of Conc	crete Support)			1.25 for uncracked concrete, 1.0 Otherwise)	· · · · · · · · · · · · · · · · · · ·	ASTM A572 Gr 42 ASTM A588 Gr 42
$L_{F} = \frac{4.00}{4.00} \text{ feet (foundation Length)}$ $W_{F} = \frac{3.00}{3.00} \text{ feet (foundation Width)}$ $H_{F} = \frac{2.50}{6} \text{ feet (foundation Depth)}$ $\frac{Design Parameters :}{0K}$ $\Phi_{b} = \frac{0.65}{0.65} \text{ (AISC 360-10 Section J8; Bearing)}$ $\Phi_{cb} = 0.70 \text{ (ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout)}$ $\Phi_{EQ} = 0.75 \text{ (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)}$	Foundation Dimensi	ons:						$t_p > 6$ in.	ASTM A36
$W_{F} = 3.00 \text{feet (foundation Eurght)}$ $W_{F} = 3.00 \text{feet (foundation Width)}$ $H_{F} = 2.50 \text{feet (foundation Depth)}$ OK $Design Parameters :$ $\phi_{b} = 0.65 (\text{AISC 360-10 Section J8; Bearing)}$ $\phi_{cb} = 0.70 (\text{ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout)}$ $\phi_{EQ} = 0.75 (\text{ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)}$	Lr =	4 00	feet (foundation	1 enath)				^[a] Preferred material s	specification
$H_{F} = \frac{2.50}{6} \text{ feet (foundation Depth)}$ $\frac{Design Parameters :}{0K}$ $\frac{\Phi_{b}}{0.65} = \frac{0.65}{0.65} \text{ (AISC 360-10 Section J8; Bearing)}$ $\frac{\Phi_{cb}}{0.65} = \frac{0.70}{0.70} \text{ (ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout)}$ $\frac{\Phi_{EQ}}{0.75} = \frac{0.75}{0.75} \text{ (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)}$	 W_= =	3.00	feet (foundation	n Width)					
$b_{EQ} = \frac{2.30}{0K}$ $b_{eb} = \frac{0.65}{0.70}$ (AISC 360-10 Section J8; Bearing) $\phi_{cb} = \frac{0.70}{0.75}$ (ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout) $\phi_{EQ} = \frac{0.75}{0.75}$ (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)	H	2 50	feet (foundation	Depth)					
Design Parameters : ϕ_b = 0.65 (AISC 360-10 Section J8; Bearing) ϕ_{cb} = 0.70 (ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout) ϕ_{EO} = 0.75 (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)	н <u>н</u> –	2.50	OK	r Deptil)					
	Design Parameters	<u>:</u>							
$ \phi_{cb} = 0.70 $ (ACI 318-08 Appendix D.4.4 ; Concrete Breakout Strength - Pullout or Pryout) $ \phi_{EQ} = 0.75 $ (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)	ϕ_{b} =	0.65	(AISC 360-10 Se	ection J8; Bearing)				
$\phi_{EQ} = \frac{0.75}{0.75}$ (ACI 318-08 Appendix D.3.3 ; Anchor capacities reduced by 0.75 in Seismic Regions)	ф _{сb} =	0.70	(ACI 318-08 App	pendix D.4.4 ; Cor	ncrete Breakout Si	trength - I	Pullout or Pryout)		
	$\phi_{EQ} =$	0.75	(ACI 318-08 App Seismic Regions	pendix D.3.3 ; Anc s)	hor capacities rec	luced by	0.75 in		

COLUMN BASE PLATE DESIGN FOR SHEAR LRFD APPROACH - AISC 360-05 AND STEEL DESIGN GUIDE 1 (SDG-1) 1251 8TH AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

BASE PLATE DESIGN - SHEAR

North Bay Seismic Design PO Box 55, Inverness, California 94937 Tel/Fax: (415) 663-8161 <u>www.NorthBaySeismicDesign.com</u>

SAMPLE WORK - CONCRETE

The sample work provided is moslty unrelated from one page to the next, one or two pages per Lateral Force Resisting System (LFRS) or component as follows:

- Special RC Shear Wall (Short and Tall)
- Special Moment Resisting Frame (SMRF)
- Strong Connections (Beam, Column, Beam-Column)

PROPORTIONING AND DETAILING OF FLEXURAL MEMBERS - BEAM WITHOUT TORSION ACI 318-14 CHAPTER 18 : SPECIAL PROVISIONS FOR SEISMIC DESIGN PCA EXAMPLE 29.2

RC SMRF - BEAM - CONT

8. Beam Design Summary

a) Frame dimensions and Beam Reinforcement Data

Span of Bay : L _x =	26.0	feet (Sep	aration b	etween C	Column C	enterlines)							
Column Sizes :		Above	Below	1			Above	Below	1					
Left	C _{1x} (Inches)	24.00	24.00		Right	C _{2x} (Inches)	30.00	30.00	(Lengt	h)				
(Outer)	C _{1y} (Inches)	24.00	24.00		(Inner)	C _{2y} (Inches)	30.00	30.00	(Width)				
E	dge Column:	L	(L for Le	ft, R for I	Right; def	ault is nei	ther)							
Beam Size :					4	Averaged	total Servi	ce Loads	:					
b =	20.00	inches					D _{Floors} =	30.00	psf					
h =	24.00	inches				-	L _{Floors} =	75.00	psf					
L		Beam Di	mension	s OK		1								
Beam Tribut	tary Width :						Seismic F	arameter	'S:					
y _t =	22.00	feet (Bea	ım tribura	ty width -	- Top)		S _{DS} =	1.095	g's (Site I	Design Co	efficient -			
y _b =	22.00	feet (Bea	ım tribura	ty width -	- Bottom)				Short Per	iod)				
t _s =	8.00	inches (S	lab thickr	ness)										
b) Miscellaneous E	Beam Desig	n Requi	rements	<u>i</u>										
Face of Sup	ports:							Shear Re	inforcemer	nt:				
		Тор	Bottom											
	Left Side =	2.00	2.00	feet (fro	m Origin)			Ноор	s, Stirrups:	No. 3				
	Right Side =	25.75	25.75	teet										
Plastic Hing	e Region:								Use N	o. 3 Hoc	ops with 4	legs at 5.00 i	inches on center, with the first one 2.0 inches	
	L _L =	6.33	feet						fro	m the fa	ace of inte	erior supports	s, for a distance of 52.00 inches each side.	
	L _R =	21.42	feet											
										3 Stirri	ine with 2	loge at 7 00 i	inches on center starting 52.00 inches from the	
		S _H =	5.00	inches (I	Hoop Spa	acing)			030 110.	fa	ce of the	interior suppo	ort for the remainder of the beam	
		S' _H =	7.00	inches (Stirrup Sp	bacing)				14		interior suppr	or for the remainder of the beam.	
Flow rol Coli								Flow rol F	ainforcom	ont:				
	L =	10 50	feet					I ICAULAI I	tennorcenn	ent.				
	Le =	15.50	feet							Bean	n Rebar	1		
	-6	13.30							Bar		D 0			
									Location	N Bars	Bar Size		Negative Reinforcement Cutoff data:	
		S =	4.00	inches (I	Hoop Spa	acing)		Left	Top (-)	6	8			
							Center	Center	Bottom (+)	4	/		Terminate 4 out of 6 - No. 8 Bars a distance of	8.90 feet from Left
							Span	Span	Bottom (+)	4	7		Column Face	
								Right	Top (-)	6	8			
								Column	Bottom (+)	4	7		Terminate 4 out of 6 - No. 8 Bars a distance of	8.99 feet from Right
							Left	Left	Top (-)	5	8		Column Face	
							Span	Left		4	-			
								Span	Bottom (+)	4	7			
							Diabt	Right	Top (-)	5	8		Positivo Poinforcoment Splice data:	
							Span	Bight	BOLLOFTI (+)	4	/		r osave meniorcement spice data.	
							opun	Span	Bottom (+)	4	7			

Use No. 3 Hoops with 4 legs at 4.00 inches on center for a distance of 36.00 inches at midspan for flexural reinforcement splice.

Project SE Exam Job No. By By AL Date 01/19/18 Sheet	Review 2018					North Bay Seis Structural Analysis PO Box 55, Inverne Tel/Fax (4 www.NorthBaySeismic	mic Design and Design ss CA 94937 15) 663-8161 Design.com
DESIGN AND D ACI 318-14 CHA ALAN WILLIAM	ETAILING OF RC BEAMS \ APTER 18 : SPECIAL PRO\ S EXAMPLE C-2A	N/ TORSION VISIONS FOR SEISMIC DE	SIGN				
Frame Orientation	ו: E-W	E-W Gridline: C				RC SMRF - BEAM W/ TORSION	
Floor Leve	d: 1	N-S Gliuline.					
b) Maximum	Forque Allowed w/o Reinforcer	nent (ACI 318-14 Section 22	.7.1.1, Table 22.7	.4.1(a))			
Not	e: T _u = 30 Kip = 360 Kip	o-ft o-in					
T _{th}	= $\phi_v \lambda$ (1/1000) $f'_c^{0.5} A_{CP}^2$	P _{CP}	Where $\phi_v =$	0.75	(Shear; Table 21.2.	.1)	
			λ =	1.00	(ACI 318-14 Table 1	19.2.4.2; $\lambda = 0.85$ for Sand-LWC, 0.75 for all other LWC, 1.0 otherwise)	
			f'c =	4.00 4.000	Ksi		
			A _{CP} =	492	in ²		
			P _{CP} =	116	in ²		
	T _{th} = 99.0 Kip = 8.25 Kip NG	in (Threshold Torsion) ft i, Must consider Torsion!					
c) Factored T	orque Causing Cracking (ACI	318-14 Table 22.7.5.1)					
T _{ct}	$= 4 \phi_v \lambda (1/1000) f_c^{0.5} A_{CP}^{-1}$	² /P _{CP}	Where $\phi_v =$	0.75	(Shear; Table 21.2.	.1)	
			λ =	1.00	(ACI 318-14 Table 1	19.2.4.2; $\lambda = 0.85$ for Sand-LWC, 0.75 for all other LWC, 1.0 otherwise)	
			f' _c =	4.00	Ksi		
			= A _{CP} =	4,000	psi		
			P _{CP} =	116	in ²	Torsional Beam Cross-Section	
	T _{ct} = 395.9 Kip	-in					
	= 32.99 Kip OK	i-ft , > Tu					1
d) Area Regu	ired for Torsion (ACI 318-14 S	Section 22.7.6.1), per foot of E	Beam				
T _u ≤ φT _n	= $2 \phi (A_0 A_T f_y COT \theta) / S$	(22.7.6.1a)					
Note	$\theta = 45$ de	grees for non-prestressed me	ember (ACI 318-1	4 Sectio	n 22.7.6.1.2(a)		
=	> $A_T = (T_u \ S) / (2 \ \phi A_T)$	$A_0 f_y$) (Required Torsion Re	einforcement - per l	eg)			
	W	here T _u = 30 Kip-ft - 360 Kip-in					
		S = 12.00 inches (One foot of beam)				
		$\phi_v = 0.75$ (Shear;	Table 21.2.1)			2	-
		$A_0 =$ Area enclosed by C	C _L of Ties (ACI 318-	14 Section	on 22.7.6.1.1		
		= 0.85 A _{oh}					
		$= 0.85 X_{o} Y_{o}$					
		for $X_0 = B_X - d_y$, - 20 _c	tor B _X	a = 16.00 inches		
		$r_0 = D_Y - u_v$, - 2 u _c	d.	= 0.38 inches (Ho	loop Diameter)	
				d _o	= 1.50 inches (M	/inimum concrete coverage - Section 7.7.1, Cast-in-place beam)	
		Х	_o = 12.63 i	nches			
		Y	o = 20.63 i	nches			
		$A_0 = 221.3$	3 in ²				
		f _{yv} = 60.0 Ksi					
	A _T =	0.217 in ² /ft (Requi	ired Torsion Reinfo	rcement ·	- per leg, per foot of Be	eam)	
e) Area Requ	ired for Shear (per foot of Bear	m)					
i) Shear Str	ength contributed by Shear Re	inforcement	alugash - 6 1		0		
Not	 e: Per ACI 318-14 Section 18.6 a) The earthquake induced sh 	.5.2 (SMRF Beams), the Shear ear force is $\geq 50\%$ of the total s	r strength of the con	ncrete V _c	= u when the following	g botn are true:	
	b) The factored compressive f	orce, P _u including EQ effects ≤	Ag f'c /20; beams of	carry neg	ligible axial forces, so i	item b is automatically true.	
Vs	$= (V_u - \phi V_c) / \phi \qquad \qquad$	Where φ = 0.75 (ACI 9.3	.2.3)				

PROPORTIONING AND DETAILING OF BEAM-COLUMN JOINTS ACI 318-14 CHAPTER 18 : SPECIAL PROVISIONS FOR SEISMIC DESIGN PCA EXAMPLES 29.4 OR 29.5

Frame Orientation :	E-W	E-W Gridline:	С
Floor Level :	1	N-S Gridline:	2

1. Frame Bay and Column Design Parameters (as specified in "Column Design" worksheet)

Column: R (L for Left, R for Right)

<u>Note:</u> Information is retrieved from "Frame Geometry" worksheet for either Left or Right column, as specified in "Column Design" worksheet.

Column	n Data	<u>a :</u>		
н	. =	12.00	feet (Story H	leight above)

H _b =	16.00	feet (Story	Height belo	w)						
			Flexur	al Bars				Bar	1	
	Column Above	Column Below	N Bars	Bar Size	d (inches)	Bar Spacing (inches)	Bar Diameter (inches)	Per Bar (in ²)	Total (in ²)	
C _x (Inches)	30.00	30.00	4	8	27.50	8.33	1.00	0.79	3.16	E - W Loading
C _y (Inches)	30.00	30.00	4	8	27.50	8.33	1.00	0.79	3.16	N - S Loading

Notes: Column being designed is column Below.

 $d_c = 1.50$ inches (Minimum concrete coverage - Table 20.6.1.3.1, Cast-in-place beam) Hoops, Stirrups: 4 (Bar number) =>

 $\begin{array}{rrr} A_v = & 0.20 & in^2 \ (Hoop/stirrup \ Area) \\ d_h = d_v = & 0.50 & inches \ (Hoop \ or \ stirrup \ Diameter) \end{array}$

S = 5.00 inches (Hoop spacing, as specified in "Column Design" worksheet)

Note: S_{max} = 5.39 inches

Beam Data:

					Top Bars			Bottom Bars			
		Span (feet)	b _w (Inches)	h (Inches)	N Bars	Bar Size	A _s (in ²)	N Bars	Bar Size	A _s (in ²)	
	Left				5	8	3.95	4	7	2.40	
E.W	Center - Left Side	26.00	20.00	24.00	6	8	4.74	4	7	2.40	
Loading	Center - Right Side	0.00	0.00	0.00	6	8	4.74	4	7	2.40	
	Right	26.00	20.00	24.00	5	8	3.95	4	7	2.40	
	Top Left	22.00	20.00	24.00	4	7	2.40	4	7	2.40	
N - S	Bottom Left	22.00	20.00	24.00	4	7	2.40	4	7	2.40	
Loading	Top Right	22.00	20.00	24.00	4	7	2.40	4	7	2.40	
ů	Bottom Right	22.00	20.00	24.00	4	7	2.40	4	7	2.40	

Slab location and thicknesses:

Slab Reinforcement: 4 (Bar number) Note: Slab location is as seen in View, either Above or Below Left, Center, or Right beams.

								· · · · ·
			Slab Th	ickness	1			
			Above ¹	Below ¹				
		Left Beam	8.00	8.00				
	E - W Loading	Center Beam	8.00	8.00				
		Right Beam	8.00	8.00				
Ca	pacity Factors :	$\phi_b = \phi_j =$	0.90 0.85	(Tension-co (Shear; Tal	ontrolled; T ble 21.2.1)	able 21.2	2.2)	
	Concrete :	$f'_c = \rho_c =$	4.00 0.145	Ksi kip/ft ³	=>	NWC	(Normal vs Light Weight Concrete, ACI 2.2; threshold is 0.
		$\lambda =$	1.00	(ACI 318-1	4 Table 19.2	2.4.2; λ	= 0	.85 for Sand-LWC, 0.75 for all other LWC, 1.0 otherwise)
		$\epsilon_{c} =$	0.003					
	Reinforcement:	f _y = E _s =	60.00 29,000	Ksi Ksi				
	Joint Dema	ands for Sel	ected Colur	nn:				
		Top Bars		Bottor	n Bars			
	Beam	A _s (in ²)	M _{pr} (kip- ft)	A _s (in ²)	M _{pr} (kip- ft)			
	Left	4.74	559	2.40	303			
	Right	3.95	477	2.40	303			
	Тор	2.40	304	2.40	304			
	Bottom	2 4 0	304	2 40	304			

RC SMRF - INTERIOR B-C CONN

Notes:

1. Beam capacities are obtained assuming stress in the tensile flexural reinforcement equal to 1.25 f_y and a strength reduction factor $\phi_b = 1.0$. 2. Values for beams, depending on selection of either Left or Right column, are copied from "Column Design" calculations.

PROPORTIONING AND DETAILING OF BEAM-COLUMN JOINTS ACI 318-14 CHAPTER 18 : SPECIAL PROVISIONS FOR SEISMIC DESIGN PCA EXAMPLES 29.4 OR 29.5

Frame Orientation : E-W

Floor Level : 1

4. Beam-Column Joint Design Summary

a) Frame dimensions and Reinforcement Data

Column: R (L for Left, R for Right)

Note: Information is retrieved from "Frame Geometry" worksheet for either Left or Right column, as specified in "Column Design" worksheet.

E-W Gridline: C N-S Gridline: 2

Column Data :

 $\begin{array}{rll} H_a = & 12.00 & \mbox{feet (Story Height above)} \\ H_b = & 16.00 & \mbox{feet (Story Height below)} \end{array}$

			Flexur	al Bars				Bar		
	Column Above	Column Below	N Bars	Bar Size	d (inches)	Bar Spacing (inches)	Bar Diameter (inches)	Per Bar (in^2)	Total (in^2)	
C _x (Inches)	30.00	30.00	4	8	27.50	8.33	1.00	0.79	3.16	E - W Loading
C _y (Inches)	30.00	30.00	4	8	27.50	8.33	1.00	0.79	3.16	N - S Loading

Notes: Column being designed is column Below.

d _c =	1.50	inches	(Minimum concrete coverage - Section 7.7.1, Cast-in-place beam)	
------------------	------	--------	---	--

Hoops, Stirrups:	4	(Bar number)	=>	$A_v =$	0.20	in ² (Hoop/stirrup Area)
				$d_h = d_v =$	0.50	inches (Hoop or stirrup Diameter)

 $S = 5.00 \qquad \text{inches (Hoop spacing, as specified in "Column Design" worksheet)}$

Note: S_{max} = 5.39 inches

Beam Data:

					Top Bars			Bottom Bars		
		Span (feet)	b _w (Inches)	h (Inches)	N Bars	Bar Size	A _s (in ²)	N Bars	Bar Size	A _s (in ²)
	Left				5	8	3.95	4	7	2.40
E.W	Center - Left Side	26.00	20.00	24.00	6	8	4.74	4	7	2.40
Loading	Center - Right Side	0.00	0.00	0.00	6	8	4.74	4	7	2.40
	Right	26.00	20.00	24.00	5	8	3.95	4	7	2.40
	Top Left	22.00	20.00	24.00	4	7	2.40	4	7	2.40
N - S	Bottom Left	22.00	20.00	24.00	4	7	2.40	4	7	2.40
Loading	Top Right	22.00	20.00	24.00	4	7	2.40	4	7	2.40
	Bottom Right	22.00	20.00	24.00	4	7	2.40	4	7	2.40

b) Miscellaneous Joint Design Requirements

i) Beam framing condition

- N_{sc} = 0 sides (number of sides confined)
- S = 5.00 inches (Hoop spacing in Column)
- (Joint Hoop spacing required) $S_J = 5.00$ inches for No. 4 hoops

ii) Actual joint hoop spacing

RC SMRF - INTERIOR B-C CONN - CONT

Project Job No. SE Exam Review 2018 North Bay Seismic Design Structural Analysis and Design PO Box 55, Inverness CA 94937 Ву AL Date 01/18/18 Tel/Fax (415) 663-8161 Sheet www.NorthBayS PROPORTIONING AND DETAILING OF COLUMNS ACI 318-14 CHAPTER 18 : SPECIAL PROVISIONS FOR SEISMIC DESIGN **RC SMRF - EXTERIOR COLUMN** PCA EXAMPLE 29.3 Frame Orientation : E-W E-W Gridline: C N-S Gridline: 1 Floor Level : 1 7. Column Design Summary Column Cross-Section A. Frame dimensions and Reinforcement Data Column: L (L for Left, R for Right) Note: Information is retrieved from "Frame Geometry" worksheet for either Left or Right column. Column Data : $H_a =$ 12.00 feet (Story Height above) $\overline{}$ $H_b =$ 16.00 feet (Story Height below) Flexural Bars Bar Area Column Bar Diameter Bar Spacing Per Bar Total Column Abov N Bars Bar Size (inches) Below (inches) (in^2) (in^2) (inches) C_x (Inches) E - W 24.00 24.00 4 8 21.50 6.33 1.00 0.79 3.16 Loading C_y (Inche N - S 4 24.00 24.00 8 21.50 6.33 1.00 0.79 3.16 Loading Notes: Column being designed is column Below.

 $A_v = 0.20$ in² (Hoop/stirrup Area)

 $d_h = d_v = 0.50$ inches (Hoop or stirrup Diameter)

N Bars

4

4

4

Bottom Ba

Bar Size

7

7

As (in^2)

2.40

2.40

2.40

2.40

2.40

-2

Design.

Beam

Left Center - Left

Center - Lett Side Center - Right Side Right

Top Left

Bottom Left Top Right

Bottom Right

Beam Data:

F-W

Loading

N - S

Loading

(Bar number) Note: Slab location is as seen in View, either Above or Below Left, Center, or Right beams.

4 (Bar number) =>

(Inches)

24.00

24.00

24.00 24.00

24.00

 Slab location is as score and sco Left Beam E - W Center Beam Right Beam Loading

Hoops, Stirrups:

Span

(feet)

26.00

26.0

22.00

22.00 22.00 22.00

b_w

(Inches)

20.00

20.00

20.00

20.00

B. Miscellaneous Column Design Requirements

d_c = 1.50 inches (Minimum concrete coverage - Section 7.7.1, Cast-in-place beam)

Top Bars

Bar Size

8

8

8

Note:

N Bars

6 6

5

S = 5.00 inches (Hoop spacing; leave blank for Smax to be used per section 5)

S_{max} = 6.00 inches

As (in^2)

4.74

4.74

3.95

2.40

2.40

2.40

2. Per ACI 18.6.3.2, $M \ge 0.05$ M_{max} at either column face

3. Per ACI 18.6.3.1, at least 2 bars continuously provided at top and bottom of section.

Project	SE Exam Review 2018
Job No.	
By	AL
Date	01/24/18
Sheet	of

STRONG CONNECTIONS - BEAM-TO-BEAM

ACI 318-14 CHAPTER 18 : SPECIAL PROVISIONS FOR SEISMIC DESIGN PCA EXAMPLE 29.7

8. Beam Strong Connection Design Summary

STRONG CONN - BEAM - CONT

a) Frame dimensions and Beam Reinforcement Data

Page 33 of 79

Column-to-Column Connection ACI 318-14 Strong Connections V1.4 1/25/2018

Notes: 1. Per ACI 318-14 Section 18.7.6.1.1, the member shear demands need not exceed that determined from joint strengths based on the probable flexural strengths M_{gr} of the members framing into the j 2. Beam capacities are obtained assuming stress in the tensile flexural reinforcement equal to 1.25 f_ν and a strength reduction factor φ₀ = 1.0, w/o slab reinforcement.

North Bay Seismic Design PO Box 55, Inverness, California 94937 Tel/Fax: (415) 663-8161 www.NorthBaySeismicDesign.com

SAMPLE WORK - WOOD

The sample work provided for Timber buildings shows EQ force distribution (from the roof down to the foundation) at a LFRS Gridline (one of 3 or 4 in each perpendicular direction) and a glimpse of the design process resulting in the Shearwall Schedule (Table of Elements and Connections) provided on the Construction Drawings for the project.

SHEARWALL LOAD DISTRIBUTION - FLEXIBLE DIAPHRAGM ANALYSIS **IBC 2009 SHEAR WALL CRITERIA** 600 LAUREL STREET, SAN FRANCISCO - SEISMIC RETROFIT

Wall Location:	6

Note: Level 2 Existing Walls assumed to resist EQ loads.

EQ Loading: Loading Direction: N-S

EARTHQUAKE OR WIND

LATERAL FORCE DISTRIBUTION -

1. Diaphragm and Shear Wall Dimensions along Plane of Assembled Walls

												Wall Segments													
Foundation			Diaphragm					Wall 1		Wall 2		Wall 3		Wall 4		Wall 5		I I	Summation of Se		egments				
	Strength	Service	Offset	Length	Edge	С	Offset	Length	Edge		Wall	Offset*	Length	Offset	Length	Offset	Length	Offset	Length	Offset	Length	ΙÍ	Wall	Floor	Tied to
Level	Load (lbs)	Load (lbs)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	Wall Levels	Height (feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)		Length (feet)	Length (feet)	Foundation (feet)*
Roof	(100)	4,356				(0.00	55.00	55.00		(1001)											1 1	(1001)	(1001)	(1001)
										Level 4	9.00	7.00	4.00	10.00	3.50	8.00	5.00	6.00	11.00				23.50	55.00	0.00
4		7,368	0	0	0.00		0.00	89.00	89.00	Tied *															
										Level 3	9.00	7.00	4.00	10.00	3.50	8.00	5.00	15.00	5.00	11.00	7.00		24.50	89.00	0.00
3		5,121	0	0	0.00	(0.00	89.00	89.00	Tied *												1 1			
										Level 2	9.00	7.00	4.00	10.00	3.50	8.00	5.00	15.00	5.00	11.00	7.00		24.50	89.00	0.00
2		2,931	0	0.00	0.00			89.00	89.00	Tied *												1 1			
										Level 1	9.00	5.00	32.00	15.50	5.00	11.00	7.00						44.00	89.00	32.00
1		1,050	3.00	38.00	41.00	4	1.00	48.00	89.00	Tied *			x												
											9.00	2.00	16.00	9.50	15.00								31.00	48.00	31.00
			41	48.00	89.00	4	4.00	45.00	89.00	Tied *			х		х							1 1			
																							0.00	45.00	0.00
										Tied *															

* Notes : 1. Wall segment offset defined from edge of diaphragm (Diaphragm offset). 2. Marked automatically with an X if Wall segment is tied to foundation. 3. After all data is complete , run macro w/ Crtl - w to update spreadsheet.

2. Vertical Wall Distribution and Shear Wall Loads

				Story Sh	near	
Level	Story Force (lbs)	Total Shear (lbs)	To Foundatio n (lbs)	To Walls (lbs)	Total Shear (lbs)	W Ler (fe
Roof	4,356	4,356		4,356	4.050	23
4	7,368	11,724	0	11,724	4,356	24
3	5,121	16,845	0	16,845	11,724	24
2	2,931	19,776	0	19,776	16,845	44
1	1,050	20,826	14,383	6,443	19,776 20,826	31

Notes: 1. Diaphragm connected to foundation transfers all load to shear walls; diaphragm connection to wall calculated separately (co 2. Load transferred to floor below is proportional to wall length over diaphragm/total wall length;

Project	600 Laurel Street, San Francisco
Job No.	201611.1
Ву	AL
Date	6/15/2018
Sheet	of

SHEARWALL LOAD DISTRIBUTION - FLEXIBLE DIAPHRAGM ANALYSIS IBC 2009 SHEAR WALL CRITERIA 600 LAUREL STREET, SAN FRANCISCO - SEISMIC RETROFIT

Note: Level 2 Existing Walls assumed to resist EQ loads.

Loading Direction: N-S

3. Plots of Unit and Net Shears and Strut Force at Wall Levels

Project	600 Laurel Street, San Francisco
Job No.	201611.1
Ву	AL
Date	6/15/2018
Sheet	of

SHEARWALL LOAD DISTRIBUTION - FLEXIBLE DIAPHRAGM ANALYSIS IBC 2009 SHEAR WALL CRITERIA 600 LAUREL STREET, SAN FRANCISCO - SEISMIC RETROFIT

WOOD FRAME SHEAR WALL CONNECTORS - ASD VALUES NDS - SDPWS 2015 SHEAR WALL CRITERIA 2525 BALBOA STREET, SAN FRANCISCO - SEISMIC RETROFIT

North Bay Seismic Design PO Box 55, Inverness CA 94937 Tel: (415) 663-8161 www.NorthBaySeismicDesign.com

SHEAR WALL FRAMING (SEE NOTE 1)

> SOLE PLATE W/ FREEZE BLOCKING (SEE NOTE 3)

SHEAR ANCHOR W/ BP PLATE (SEE NOTE 1)

NTS

Le (See Note 1) NBSD-Software.Com

WOOD FRAME SHEAR WALL - CONNECTORS

HOLDOWN (SEE NOTE 1)

 REFER TO SHEARWALL AND CONNECTOR SCHEDULE ON DRAWINGS FOR CONNECTOR SPACING INFORMATION AND EMBEDMENT LENGTH.
 S.FOLLOW MANUFACTURER'S GUIDELINES FOR PLACEMENT AND INSTALLATION OF CONNECTORS.
 CONNECT FREEZE BLOCKS TO SOLE PLATE W/2- 164 MIN PER BLOCK

SHEAR WALL CONNECTION TO FOUNDATION

Notes: 1. Values exceeding the largest capacity are flagged as No Good (NG) in Shear Wall Design worksheet.

- 2. Design values used in tables below must be arranged in increasing order.
- 3. Adjustment Factor (values less than 1.0) are used for the following reasons:
 - to adjust tabular selection of threshold values (when the table will select a larger connector).
 - It also is used for uniformity of results, to ensure that all holdowns are approximately similarly loaded (i.e. 30% 75% of tabular values).

SHEAR WALL

EDGE NAILING (SEE NOTE 1)

S (SEE NOTE 1)

Note 1)

CONCRETE FOUNDATION

NOTES:

- to prevent any holdowns from being overloaded if calculated loads are exceeded during an extreme event.

1. Shear Wall Components

a) Shear Wall Holdowns and Chords

Source:	Simpson C-2	017 Catalog		
			Holdown	Capacity

Holdown	Chord Required	Chord Area (in ²)	Adjustment Factor	Catalog Allowable Load (lbs)	Adjusted Capacity (Ibs)	Deflection at Allowable Load, δ _a (inches)
HDU2	2-2x	16.50	0.75	3,075	2,306	0.088
HDU4	2-2x	16.50	0.75	4,565	3,424	0.114
HDU5	2-2x	16.50	0.90	5,645	5,081	0.115
HDU8	3-2x	24.75	0.95	7,870	7,477	0.110
HDU14	4x6	19.25	0.95	10,770	10,232	0.113
HDU14	6x6	30.25	1.00	14,375	14,375	0.122
HDU19	6x6	30.25	1.00	16,775	16,775	0.172

b) Holdown Anchor Capacity - Tension

Source:

Type: New Cast-in-Place Anchors w/ adequate spacing, end and edge distances.

As calculated

		And	hor Capaci	ty
Holdown Anchor Diameter (inches)	Anchor Embedment (inches)	Adjustment Factor	Design Value (Ibs)	Adjusted Capacity (Ibs)
5/8	8.50	0.90	4,000	3,600
5/8	10.00	0.90	5,900	5,310
3/4	12.50	0.90	8,730	7,857
7/8	14.00	0.90	12,490	11,241
1 1/8	18.00	1.00	16,775	16,775

c) Shear Anchor Bolts

Source: NDS 15 Table 12E, Table 11.3.1

Factored (Adjusted) Design Value for Sawn Lumber to Concrete

NBSD-Software.Com

WOOD FRAME SHEAR WALL CONNECTORS - ASD VALUES NDS - SDPWS 2015 SHEAR WALL CRITERIA 2525 BALBOA STREET, SAN FRANCISCO - SEISMIC RETROFIT

2. Shear Wall to Floor Required Hardware - Collectors

a) Required Coiled Strap - Perpendicular to Framing

Source: Simpson C-2017 Catalog

		01											
		Strap Capacity											
Coiled Strap	Nails Required	Adjustment Factor	Catalog Value (lbs)	Adjusted Capacity (lbs)									
CS18	10d	0.75	1,370	1,028									
CS16	10d	0.75	1,705	1,279									
CS14	10d	0.75	2,490	1,868									
CMSTC16	16d	0.75	4,585	3,439									
CMSTC14	16d	0.75	6,490	4,868									
CMSTC12	16d	0.75	9,215	6,911									

NB

b) Required Coiled and Regular Straps - Parallel to Framing

Source:	Sim	pso
---------	-----	-----

npson C-2017 Catalog

- Notes: 1. For the length of the Shear Wall, the detail shown uses Coiled straps across 2x blocked joists, same as Normal direction.
 - Beyond the length of the Shear Wall, the detail shown uses a sistered 2x joist w/ A34 Angles @ 12" oc (alternate EA side) to connect the sistered 2x collector to the floor diaphragm.
 - At splice locations for 2x joists (sistered or otherwise) beyond wall, the following straps may be used to connect joists used as collectors:

		Str	ap Capacity	/
Coiled Strap	Nails Required Ea Side	Adjustment Factor	Catalog Value (lbs)	Adjusted Capacity (lbs)
CS18	18-10d	0.75	1,370	1,028
CS16	22-10d	0.75	1,705	1,279
CS14	30-10d	0.75	2,490	1,868
MST48	26-16d	0.75	3,215	2,411
MST48	34-16d	0.75	4,205	3,154
MST60	46-16d	0.75	6,235	4,676

Note : 6 - 3/4" diameter carriage bolts w/ BP Plates centered on splice with 4" End and 2" Edge distances may be used instead.

NOTES:

1. REFER TO SHEAR TO FLOOR CONNECTION - NORMAL TO JOISTS DETAIL FOR CONNECTION INFORMATION NOT PROVIDED. JOISTS MUST BE

2. REFER TO SHEARWALL AND CONNECTOR SCHEDULE FOR CONNECTOR SPACING INFORMATION.

3. PROVIDE 4X BLOCKS BETWEEN JOISTS (WITH SNUG FIT) AND CONNECT TO JOISTS WITH 4 - A34 ANGLES EA SIDE.

4. USE SHORT NAILS FOR ANGLES, AND STAGGER ANGLES ON BOTH SIDES OF EA JOIST IN ORDER TO MINIMIZE NAIL DAMAGE TO JOIST.

5. PROVIDE COILED STRAP WITH SPECIFIED NAILS AS SHOWN ON RETROFIT PLANS.

NOTES:

1. REFER TO SHEAR TO FLOOR CONNECTION - PARALLEL TO JOISTS DETAIL FOR CONNECTION INFORMATION NOT PROVIDED.

2. REFER TO SHEARWALL AND CONNECTOR SCHEDULE FOR CONNECTOR SPACING INFORMATION.

3. PLACE 2X BLOCKING @ 24" O.C. NORMAL TO FLOOR JOISTS THE LENGTH OF THE SHEAR WALL. BLOCKS MUST FIT SNUGLY BETWEEN JOISTS. CONNECT BLOCKING TO FLOOR SHEATHING W/2 - A34 ANGLES EA SIDE OF BLOCKING.

4. WITHIN THE LENGTH OF THE SHEAR WALL, PROVIDE 2X FREEZE BLOCKS BETWEEN BLOCKING (WITH SNUG FIT) AND CONNECT TO JOISTS WITH 2-16d EA SIDE OF FREEZE BLOCK. BEYOND THE SHEAR WALL, USE A SISTERED JOIST CONNECTED WITH 2 - 16d NAILS PER FOOT, STAGGERED EA SIDE OF SISTERED JOISTS.

5. PROVIDE COILED STRAP WITH SPECIFIED NAILS FULL LENGTH OF SHEAR WALL AS SHOWN ON RETROFIT PLANS. EXTEND STRAP A MIN OF 36" BEYOND WALL ENDS.

COLLECTOR DETAIL - PARALLEL TO FLOOR JOISTS

NTS

NBSD-Software.Com

WOOD FRAME SHEAR WALL CONNECTORS - ASD VALUES NDS - SDPWS 2015 SHEAR WALL CRITERIA 2525 BALBOA STREET, SAN FRANCISCO - SEISMIC RETROFIT

3. Shear Wall to Floor Required Hardware - Shear Wall to Diaphragm Connection

NOTES:

1 REFER TO SHEARWALL AND CONNECTOR SCHEDULE FOR CONNECTOR SPACING INFORMATION

2. PLACE CONNECTOR PER MANUFACTURERS GUIDELINES.

3. PLACE FREEZE SOLE BLOCK BY HAMMERING ON SEPARATE BLOCK AND CRUSHING WOOD AROUND SDS SCREW. CONNECT W/2-16d.

4. CONNECT BLOCKING TO JOIST WITH 2 - 16d NAILS PER FOOT.

b) Dowel Connections - In-Plane Shear Transfer between Shear Wall Above and Below Floor Joists

Capacity Value = 350 lbs

NOTES:

1. REFER TO SHEARWALL AND CONNECTOR SCHEDULE FOR CONNECTOR SPACING INFORMATION

2. PLACE CONNECTOR PER MANUFACTURERS GUIDELINES.

3. PROVIDE SISTERED 2X JOIST THE LENGTH OF SHEAR WALL, CONNECTED W/ 2 - 16d NAILS PER FOOT.

PLACE FREEZE BLOCK BETWEEN 2X STUDS BY HAMMERING ON SEPARATE BLOCK AND CRUSHING WOOD AROUND SDS SCREW ON SOLE PLATE. CONNECT W/ 2-16d

SHEAR WALL TO FLOOR CONNECTION NTS PARALLEL TO JOISTS

1. Shear Wall Connectors

Project Job No. By Date Sheet	2525 Balb 202203. AL 3/22/202	ooa Stree 10 25	ıt, S.F.																				ן <u>ש</u>	North Bay PO Box 55	y Seismic 5, Inverness Tel: (415) aySeismicD	Design CA 94937 663-8161 esign.com
	0																							NE	SD-Softw	are.Com
WOOD F NDS - SI 2525 BA	RAME SI PECIAL D LBOA ST	HEAR N DESIGN REET,	VALL DE I PROVIS SAN FR 4: Maximi	ESIGN S SIONS F ANCISC	UMMA OR WIN O - SEI Wall Asi	RY TAB ND & SI ISMIC F	BLE - FI EISMIC RETROI	LEXIBLE (SDPWS FIT	DIAPHRA 2015) SHI	GM ASS EAR WA	SUMPTION	s - Ine Ria - A	DIVIDUAL SD VALU	_ SHEAR JES	WALL :	SEGMENT	S			W	OOD I	FRAN	AE S	HEA	R W	ALL
				un onou		Joor Hat								EQ	Wind	l					_					
	She	ar Wall S	Sheathing T	ype :		Max H / B Ratio					Type of Late	ral Loa	ds:	x		Note:	Wind Lo	oads increase	Panel capa	acity by 1.40.	- I	PANE	EL D	ATA	AN	D
	Wood Str Wood Str	uctural P uctural P	anels, Unb anels, Bloo	locked ked		2 : 1 3.5 : 1		Buildin	g has Horiz/V	ert Irregu	larities per AS	CE 7-10) 12.3.3.4 =		(25% In	crease in Fo	rces/ Red	duction in Cap	acities for	Seismic Design	Categories D - F	F)	COL	LEC	TOR	S
							•			Type of	Shear Wall F	anels														
Notes:	1. Value	e in table	e reduced	(modified	l) by 2 B	/H for	walls			Woo	d Structural Pa	anels - S	Structural I		х			Connector	Capacities:							
	with 2	2.0 ≤ H /	B ≤ 3.5 p	er NDS S	SDPWS	2015 S	ection 4.	3.4.3.		Woo	d Structural Pa	anels - S	Sheathing			(Default)		A34 =	515	lbs (Framing	angle capacity)					
	2. Collect	tor Loads	are increa	ised by 1.2	25 for Sei	smic De	sign Cate	gories D -	F	Plyw	ood Siding						5	SDS Screw =	350	lbs (SDS 1/4	x 4.5)					
	if buil	ding is fl	agged with	Irregularit	ies identi	fied in A	SCE 7-10) 12.3.3.4.										Z' =	1,888	lbs (Factored	Foundation Anch	or capacity)				
	3. W000	rrame Sr	le 4 34 for	ASD value Shear Wa	es detern Il sheathi	ng and n	n NDS S ailing ont	ions	5 Table 4.3A.																	
	Ren		10 4.0/(10)	oncar wa	ii Sheadh	ng ana n	anng opt	10113.																		
					Individ	ual Wall	1			Des	al Data	Woo	d Frame S	hear Wall	Data	hie Well Line	4 Chaor	Chaor	W/elle	1	Require	d Hardware	•		Mudaill) a ch c ro
		<u> </u>			Segr	ments				га	lei Dala			a 	Allowa		t Silear	Silear	vvalis	Single Strap			maym		iviuusiii /	ALICHOIS
Loading Direction	LFRS Gridline	Floor Level	Normal Gridline	F _{MAX} (kips)	Height H (feet)	Width B (feet)	Service Load, V _S (lb/ft)	Collector Force ² (lbs)	Shearwall Chord Force (lbs)	No. Panels	Thickness (inches)	Size	Edge Nailing (inches)	Field Nailing (inches)	Tabular Value (lb/ft)	Modified ¹ (Ib/ft)	Check	Holdown and Chord	Holdown Anchor	Parallel to Framing beyond Shear Wall	Coiled Strap at Shear Wall, Normal to Framing	No. Framing Angles/ Wall	Framing Angle Spacing (inches)	SDS Screw Spacing (inches)	No. Anchors	Anchor Spacing (inches)
N-S	1	1	A - E	24.31	11.78	41.00	593	5,500	6,983	1	15/32	10d	3	12	665	665	ok	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use 2 MST60 Straps w/ 46- 16d	Use CMSTC12 Strap w/ 16d	48 - A34" Angle	10.04	6.93	16 - 5/8" Bolts	32
	2	1	G - J	27.28	10.28	46.00		16,270			Simpson 2	-Bay Fi	3 SMRF 2							Use 4 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d					
	10	1	A - B	12.56	12.25	19.00	661	5,500	8,097	1	15/32	10d	2	12	870	870	ok	HDU14 w/ 4x6	7/8 w/ 14.00 Embed	Use 2 MST60 Straps w/ 46- 16d	Use CMSTC12 Strap w/ 16d	25 - A34" Angle	8.77	6.16	8 - 5/8" Bolts	32
		1	G - J	34.37	10.28	52.00	661	10,200	6,792	1	15/32	10d	2	12	870	870	ok	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use 3 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d	67 - A34" Angle	9.18	6.24	20 - 5/8" Bolts	32

WOOD FRAME SHEAR WALL DESIGN SUMMARY TABLE - FLEXIBLE DIAPHRAGM ASSUMPTIONS - INDIVIDUAL SHEAR WALL SEGMENTS NDS - SPECIAL DESIGN PROVISIONS FOR WIND & SEISMIC (SDPWS 2015) SHEAR WALL CRITERIA - ASD VALUES 2525 BALBOA STREET, SAN FRANCISCO - SEISMIC RETROFIT

NDS 15 Table 4.3.4: Maximum Shear Wall Aspect Ratios

Shear Wall Sheathing Type :	Max H / B Ratio
Wood Structural Panels, Unblocked	2:1
Wood Structural Panels, Blocked	3.5 : 1

Notes: 1. Value in table reduced (modified) by 2 B / H for walls with $2.0 \le H / B \le 3.5$ per NDS SDPWS 2015 Section 4.3.4.3.

 Collector Loads are increased by 1.25 for Seismic Design Categories D - F if building is flagged with Irregularities identified in ASCE 7-10 12.3.3.4.

 Wood frame Shear Walls ASD values determined from NDS SDPWS 2015 Table 4.3A. Refer to Table 4.3A for Shear Wall sheathing and nailing options.

										Wood Frame Shear Wall Data ³					Required Hardware											
					Individ	ual Wall				Pa	Panel Data Nail Data				Allowa	ble Wall Uni	t Shear	Shear	Walls		Shear Wall to	Floor Diap	hragm		Mudsill A	Anchors
Loading Direction	LFRS Gridline	Floor Level	Normal Gridline	F _{MAX} (kips)	Height H (feet)	Width B (feet)	Service Load, V _S (Ib/ft)	Collector Force ² (lbs)	Shearwall Chord Force (lbs)	No. Panels	Thickness (inches)	Size	Edge Nailing (inches)	Field Nailing (inches)	Tabular Value (lb/ft)	Modified ¹ (lb/ft)	Check	Holdown and Chord	Holdown Anchor	Single Strap Parallel to Framing beyond Shear Wall	Coiled Strap at Shear Wall, Normal to Framing	No. Framing Angles/ Wall	Framing Angle Spacing (inches)	SDS Screw Spacing (inches)	No. Anchors	Anchor Spacing (inches)
W-E	A	1	3 - 9	18.10	12.25	21.00		7,353			Simpso	on FB SI	MRF 1							Use 2 MST60 Straps w/ 46- 16d	Use 1 - CMSTC12 Strap w/ 16d					
	E	1	2 - 2.5	3.32	11.30	6.00	554	1,391	6,260	1	15/32	10d	3	12	665	665	ok	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use CS14 Strap w/ 30- 10d	Use CS14 Strap w/ 10d	7 - A34" Angle	9.00	6.55	3 - 5/8" Bolts	32
		1	3 - 8	8.86	11.30	16.00	554	1,391	6,260	1	15/32	10d	3	12	665	665	ok	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use CS14 Strap w/ 30- 10d	Use CS14 Strap w/ 10d	18 - A34" Angle	10.11	7.11	6 - 5/8" Bolts	32
		1	6 - 10	8.86	11.30	16.00	554	1,391	6,260	1	15/32	10d	3	12	665	665	ok	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use CS14 Strap w/ 30- 10d	Use CS14 Strap w/ 10d	18 - A34" Angle	10.11	7.11	6 - 5/8" Bolts	32
	G	1	5 - 8	10.64	10.60	7.00	1,520	16,134	16,112	2	15/32	10d	2	12	1,740	1,740	ok	HDU19 w/ 6x6	1.125 w/ 18.00 Embed	Use 4 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d	21 - A34" Angle	3.82	2.63	6 - 5/8" Bolts	14
		1	8 - 10	11.00	10.60	7.00	1,571	16,134	16,653	2	15/32	10d	2	12	1,740	1,740	ok	HDU19 w/ 6x6	1.125 w/ 18.00 Embed	Use 4 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d	22 - A34" Angle	3.65	2.55	6 - 5/8" Bolts	14
	к	1	8 - 10	6.02	9.70	7.00	860	4,229	8,342	1	15/32	10d	2	12	870	870	ok	HDU14 w/ 4x6	7/8 w/ 14.00 Embed	Use MST60 Strap w/ 46- 16d	Use CMSTC14 Strap w/ 16d	12 - A34" Angle	6.46	4.42	4 - 5/8" Bolts	21
		1	D.5 - E.5	13.76	9.70	16.00	860	4,229	8,342	1	15/32	10d	2	12	870	870	ok	HDU14 w/ 4x6	7/8 w/ 14.00 Embed	Use MST60 Strap w/ 46- 16d	Use CMSTC14 Strap w/ 16d	27 - A34" Angle	6.86	4.68	8 - 5/8" Bolts	24
	М	1	D.5 - E.5	9.39	9.41	16.00	587	4,737	5,524	1	15/32	10d	3	12	665	665	ok	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use 2 MST60 Straps w/ 46- 16d	Use CMSTC14 Strap w/ 16d	19 - A34" Angle	9.60	6.86	6 - 5/8" Bolts	32
	Ρ	1	E.5 - E.8	8.14	9.41	12.00		3,310			Simpso	on FB SI	MRF 3							Use MST60 Strap w/ 46- 16d	Use CMSTC16 Strap w/ 16d					

Wood Structural Panels - Structural I

Wood Structural Panels - Sheathing

Type of Lateral Loads:

Building has Horiz/Vert Irregularities per ASCE 7-10 12.3.3.4 =

Type of Shear Wall Panels

EQ Wind

х

x

Note:

	Connector Ca	pacities:		
(Default)	A34 =	515	lbs	(Framing angle capacity)
	SDS Screw =	350	lbs	(SDS 1/4 x 4.5)

Wind Loads increase Panel capacity by 1.40.

(25% Increase in Forces/ Reduction in Capacities for Seismic Design Categories D - F)

Z' = 1,888 Ibs (Factored Foundation Anchor capacity)

WOOD FRAME - SHEAR WALL SCHEDULE

Wall Dimensions			nensions	Panel Data Nail Data				Shear Wall Connectors Shear Wall to Floor Diaphragm				Mudsill Anchors								
Loading Direction	LFRS Gridline	Floor Level	Normal Gridline	Height (feet)	Width (feet)	No. Panels	Thickness (inches)	Size	Edge (inches)	Field (inches)	Min Nail Penetration into Main Member (inches)	Holdown	Anchor Diameter	Single Strap Parallel to Framing beyond Shear Wall	Coiled Strap at Shear Wall, Normal to Framing	No. Framing Angles/ Wall	Framing Angle Maximum Spacing (inches)	SDS Screw Spacing (inches)	No. Anchors/ Mudsill	Anchor Spacing (inches)
N-S	1	1	A - E	11.78	41.00	1	0.47	10d	3	12	1 1/2	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use 2 MST60 Straps w/ 46- 16d	Use CMSTC12 Strap w/ 16d	48 - A34" Angle	10.04	6.93	16 - 5/8" Bolts	32
	2	1	G - J	10.28	46.00		s	impson 2-l	Bay FB SM	RF 2	1			Use 4 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d					
	10	1	A - B	12.25	19.00	1	0.47	10d	2	12	1 1/2	HDU14 w/ 4x6	7/8 w/ 14.00 Embed	Use 2 MST60 Straps w/ 46- 16d	Use CMSTC12 Strap w/ 16d	25 - A34" Angle	8.77	6.16	8 - 5/8" Bolts	32
		1	G - J	10.28	52.00	1	0.47	10d	2	12	1 1/2	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use 3 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d	67 - A34" Angle	9.18	6.24	20 - 5/8" Bolts	32

	Wall Dimensions Panel Data Nail Data				Shear Wall Connectors Shear Wall to Floor Diaphragm				Mudsill	Anchors											
Loading Direction	LFRS Gridline	Floor Level	Normal Gridline	Height (feet)	Width (feet)	No. Panels	Thickness (inches)	Size	Edge (inches)	Field (inches)	Min N Penetra into Ma Memb (inche	Vail ation Iain ber es)	Holdown	Anchor Diameter	Required Strap Parallel to Framing	Required Coiled Strap Perpendicular to Framing	No. Framing Angles/ Wall	Framing Angle Maximum Spacing (inches)	SDS Screw Spacing (inches)	No. Anchors/ Mudsill	Anchor Spacing (inches)
W-E	A	1	3 - 9	12.25	21.00			Simpson	FB SMRF	1	 I				Use 2 MST60 Straps w/ 46- 16d	Use 1 - CMSTC12 Strap w/ 16d					
	E	1	2 - 2.5	11.30	6.00	1	0.47	10d	3	12	1 1/2	2	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use CS14 Strap w/ 30- 10d	Use CS14 Strap w/ 10d	7 - A34" Angle	9.00	6.55	3 - 5/8" Bolts	32
		1	3 - 8	11.30	16.00	1	0.47	10d	3	12	1 1/2	2	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use CS14 Strap w/ 30- 10d	Use CS14 Strap w/ 10d	18 - A34" Angle	10.11	7.11	6 - 5/8" Bolts	32
		1	6 - 10	11.30	16.00	1	0.47	10d	3	12	1 1/2	2	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use CS14 Strap w/ 30- 10d	Use CS14 Strap w/ 10d	18 - A34" Angle	10.11	7.11	6 - 5/8" Bolts	32
	G	1	5 - 8	10.60	7.00	2	0.47	10d	2	12	1 1/2	2	HDU19 w/ 6x6	1.125 w/ 18.00 Embed	Use 4 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d	21 - A34" Angle	3.82	2.63	6 - 5/8" Bolts	14
		1	8 - 10	10.60	7.00	2	0.47	10d	2	12	1 1/2	2	HDU19 w/ 6x6	1.125 w/ 18.00 Embed	Use 4 MST60 Straps w/ 46- 16d	Use 2 - CMSTC12 Strap w/ 16d	22 - A34" Angle	3.65	2.55	6 - 5/8" Bolts	14
	к	1	8 - 10	9.70	7.00	1	0.47	10d	2	12	1 1/2	2	HDU14 w/ 4x6	7/8 w/ 14.00 Embed	Use MST60 Strap w/ 46- 16d	Use CMSTC14 Strap w/ 16d	12 - A34" Angle	6.46	4.42	4 - 5/8" Bolts	21
		1	D.5 - E.5	9.70	16.00	1	0.47	10d	2	12	1 1/2	2	HDU14 w/ 4x6	7/8 w/ 14.00 Embed	Use MST60 Strap w/ 46- 16d	Use CMSTC14 Strap w/ 16d	27 - A34" Angle	6.86	4.68	8 - 5/8" Bolts	24
	М	1	D.5 - E.5	9.41	16.00	1	0.47	10d	3	12	1 1/2	2	HDU8 w/ 3-2x	3/4 w/ 12.50 Embed	Use 2 MST60 Straps w/ 46- 16d	Use CMSTC14 Strap w/ 16d	19 - A34" Angle	9.60	6.86	6 - 5/8" Bolts	32
	Ρ	1	E.5 - E.8	9.41	12.00			Simpson	FB SMRF	3					Use MST60 Strap w/ 46- 16d	Use CMSTC16 Strap w/ 16d					

SAMPLE WORK - FOUNDATIONS

Sample work showing portions of the design process for Spread Footings supporting two different Lateral Force Resisting Systems (timber shear wall, steel Special Moment Resisting Frame) in separate LFRS Gridlines (lines of resistance) in one project. The foundations are checked for bearing and sliding, flexure and shear for the loads applied; for the SMRF foundation, additional flexural and shear reinforcement is provided to adequately resist Fixed Column strength.

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

SINGLE WALL SPREAD FOOTING DESIGN - CASE N-4 - SHEAR WALL AT GRIDLINE M ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

SINGLE WALL FOOTING DESIGN

Footing Elevation and Plan

10

5

0

-5

-10

1. Wall is located in transverse center of footing. Assumptions : 2. Footing has no shear reinforcement. Concrete is Normal Weight Concrete with uncoated bars.

Footing Parameters :

Footing Size :		
L _x =	21.0	feet
L _y =	2.0	feet
h _f =	3.0	feet
Wall Location :		
X _c =	10.5	feet (Wall centerline distance from Left Edge)
y _c =	1.0	feet (Wall centerline distance from Bottom Edge)
Wall Size :		
C _x =	16.0	feet (Wall length)
C _v =	0.5	feet (Wall width)

Interconnected Slab at Sides:

Note : Slabs at sides are used only to reduce soil bearing pressure; footing is designed to take all loads.

Side :	Left	Right	
t	4.00	4.00	Inches (Slab Thickness)
Х	16.00	20.00	Feet (distance to other Slab Edge Support
f'c	3.00	3.00	Ksi
Conn Type	D	D	(D= Dowel, C= Continuous)

Foundation Cross-Section

Footing Loads :

	Service	Strength	
P =	9.7	13.6	kips
M _y =	258.3	361.6	kip-ft
V _x =	9.39	13.1	kips (Base Shear at Wall)
	Graph Adjustments:		
	Y _q =	15.00	feet (Graph placement - Soil)
	R _q =	0.500	(scale factor - Soil)
	Y _v =	30.00	feet (Graph placement - Shear)
	R _v =	0.250	(scale factor - Shear)
	Y _f =	45.00	feet (Graph placementr - Flexure)
	R _f =	0.250	(scale factor- Flexure)
Capacity Factors :	φ _v =	0.75	(Shear; ACI 318-14 21.2.1)
	φ _b =	0.65	(Bearing)
Concrete :	f' _c =	3.25	Ksi
	$f_v =$	60.00	Ksi
	$\rho_{c} =$	0.150	kip/ft ³
Reinforcement:	d _c =	2.00	inches (bar clearance - top)
	d _c =	3.00	inches (bar clearance - bottom)
	=	2.00	inches (bar clearance - sides)
			(

								Bar	Area
	Orientation	Bar Size	N Bars	Bottom Layer	d (inches)	Bar Spacing (inches)	Bar Diameter (inches)	Per Bar (in²)	Total (in ²)
Top Mat	х	6	7	х	33.25	3.21	0.75	0.44	3.08
i op wat	у	5	60		32.75	4.19	0.63	0.31	18.60
Bottom Mat	х	6	7		31.63	3.21	0.75	0.44	3.08
DOLIOITI IVIAL	У	5	60	х	32.38	4.19	0.63	0.31	18.60

Note: Used for placing top bars only.

Soil Parameters :

 $\rho_s =$ 120 pcf $\sigma_{\text{allow}} =$ 2.00

ksf (allowable bearing pressure)

 $\sigma_p =$ 0.30 ksf/ft (Passive Soil Pressure)

μ= 0.35 (Coefficient of Friction)

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

NBSD-Software.Com

SINGLE WALL SPREAD FOOTING DESIGN - CASE N-4 - SHEAR WALL AT GRIDLINE M ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

2. Lateral Resistance of Foundation

Longitudinal Loading

3. Soil Pressure due to Applied Loads

3A. Longitudinal Loading

a) Loading Eccentricity

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

2r

SINGLE WALL SPREAD FOOTING DESIGN - CASE N-4 - SHEAR WALL AT GRIDLINE M ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

4. Applied Loading and Demands on Footing

		-		1.51 /		
			Longitudi	nal Directio	n	
		Left End	Left Face of Wall	Wall Centerline	Right Face of Wall	Right End
Location (feet)	l	0	2.50	10.50	18.50	21.00
$\sigma = q_u/L_y$	(ksf)	0.00	0.00	0.00	3.91	8.88
Ρ	(kips)	-	-	14	-	-
M _y (kip-ft)		-	-	362	-	-
V+ (kips)		-	19	3	-	-
V- (kips)		0	-3	-	-28	-1
M+ (kip-ft)		0	3	-	-	1
M- (kip-ft)		-	-	-83	-38	-

SINGLE WALL SPREAD FOOTING DESIGN
ACI 318-14 LOADS AND DESIGN- CASE N-4 - SHEAR WALL AT GRIDLINE M2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

5. Adequacy of Footing - Shear

A. Flexural/One-Way Shear

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

NBSD-Software.Com

SINGLE WALL SPREAD FOOTING DESIGN - CASE N-4 - SHEAR WALL AT GRIDLINE M ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

B. Punching/Two Way Shear

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

NBSD-Software.Com

SINGLE WALL SPREAD FOOTING DESIGN - CASE N-4 - SHEAR WALL AT GRIDLINE M ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

6. Adequacy of Footing - Flexure

A. Longitudinal Flexure

d) Minimum Reinforcement of Flexural Members (ACI 318-14 Sect 18.13.3.3 => 18.6 => 18.6.3.1 => 9.6.1.2)

Note: Section 9.6.1.3, which allows the following criteria to be disregarded if ρ > 1.33 ρ_r, is not considered, as EQ overload could easily exceed this safety margin.

 $\rho_{min} = Max [3 f'_{c}^{0.5} / f_{y}, 200 / f_{y}] \leq 0.025$ Where f'c = 3,250 psi = Max [0.0029,0.0033] ≤ 0.025 f_y = 60,000 psi = Max [0.0033] ≤ 0.025 0.0033 $\rho_{min} =$ e) Minimum Reinforcement Area Required $\mathsf{A}_{\mathsf{min}} = \rho_{min} \; A_g$ Where $\rho_{min} = 0.0033$ and $L_y =$ $A_g = L_y h_f$ 2.0 feet 24 inches h_f = 3.00 feet 36.00 inches = 864 $A_g =$ in² A_{min} = 2.88 Note: A_{s1} = 3.08 in² in² (reinforcement provided) ок

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

NBSD-Software.Com

SINGLE WALL SPREAD FOOTING DESIGN	- CASE N-4 - SHEAR WALL AT GRIDLINE M
ACI 318-14 LOADS AND DESIGN	
2525 BALBOA STREET, S.F SEISMIC RETROFIT	

f) Flexural reinforcement development length

i) Development Length (ACI 318-14 Sect 25.4.2.2 - 25.4.2.3) Bar Size = 6

S - d_b

Bar Size =	
d _e =	

 $\begin{array}{rcl} \mbox{Where S} = & 3.21 & \mbox{inches} & (\mbox{Bar spacing provided}) \\ \mbox{d}_b = & 0.75 & \mbox{inches} \end{array}$

d_s = 2.46 inches inches (Clear spacing provided)

d _c =	2.00	inches (Clear Cover provided)
------------------	------	-------------------------------

	Provided (inches)	Upper Limit	Lower Limit			
Clear Cover	2.00	d _b = 0.75 inches <mark>OK</mark>	2 d _b = 1.50 inches <mark>OK</mark>			
lear Spacing	2.46	2 d _b = 1.50 inches OK	4 d _b = 3.00 inches NG			
	No. 6 and Smaller Bars	$l_{d} = \left(\frac{\mathbf{f}_{y} \boldsymbol{\Psi}_{t} \boldsymbol{\Psi}_{e}}{25 \lambda \sqrt{\mathbf{f}_{c}}}\right) \mathbf{d}_{b}$	$l_{d} = \frac{3}{50} \left(\frac{f_{y} \Psi_{t} \Psi_{e}}{2.5 \lambda \sqrt{f_{c}}} \right) d_{b}$			
	No. 7 and Larger Bars	$l_{d} = \left(\frac{\mathbf{f}_{y} \ \Psi_{t} \ \Psi_{e}}{20 \ \lambda \sqrt{\mathbf{f}_{c}}}\right) \mathbf{d}_{b}$	$l_{d} = \frac{3}{40} \left(\frac{f_{y} \Psi_{t} \Psi_{e}}{2.5 \lambda \sqrt{f_{c}}} \right) d_{b}$			
	Values	$l_{d} = 42.10 d_{b}$ $l_{d} = 31.6 inches$	$I_d = 25.26$ d_b $I_d = 18.9$ inches			

Note: Normal Weight Concrete with uncoated bars is assumed.

Where f _y =	60.00	Ksi
$\Psi_t =$	1.00	(ACI 318-14 Table 25.4.2.4; top
$\Psi_{e} =$	1.00	(ACI 318-14 Table 25.4.2.4; und
λ =	1.00	(ACI 318-14 Table 25.4.2.4; λ =
$f'_c =$	3.25	Ksi
$d_b =$	0.75	inches for No. 6 bar

ii) Excess Reinforcement (ACI 318-14 Sect 25.4.10)

Note: Splices in Seismic Force Resisting systems in Seismic Design Categories D - F may NOT be reduced per ACI 318-14 Sect 25.4.10.2.

Project Job No. By Date Sheet	2525 Balboa, 202203.10 AL 03/22/25 of	S.F.			North Bay Seismic Design PO Box 55, Inverness CA 94937 Tel: (415) 663-8161 www.NorthBaySeismicDesign.com
	01				NBSD-Software.Com
SINGLE WALL ACI 318-14 LO 2525 BALBOA	SPREAD FOO ADS AND DESI STREET, S.F	TING DES GN SEISMIC	IGN RETROFI	- CASE N-4 - SHEAR WALL AT GRIDLINE I T	Footing Elevation and Plan
Assumptions :	 Wall is loca Footing ha Concrete is 	ated in trar s no shear s Normal V	nsverse ce r reinforcer Veight Cor	nter of footing. nent. crete with uncoated bars.	
Footing Pa	arameters :				
	$\label{eq:local_states} \begin{split} \underline{Footing\ Size\ :} & L_x = \\ & L_y = \\ & h_f = \\ \end{split}$ $\label{eq:local_states} \begin{split} \underline{Wall\ Location\ :} & x_c = \\ & y_c = \\ \end{split}$	21.0 2.0 3.0 10.5 1.0	feet feet feet (Colu feet (Colu	mn centerline distance from Left Edge) mn centerline distance from Bottom Edge)	
	$\frac{\text{Wall Size :}}{C_x} = C_y =$	16.0 0.5	feet (Wall feet (Wall	length) width)	Foundation Cross-Section
	Interconne	ected Slab	at Sides:		2
	Note : i	Slabs at si s designed	des are us I to take al	ed only to reduce soil bearing pressure; footing loads.	
	Side :	Left	Right		
	t	4.00	4.00	Inches (Slab Thickness)	
	X	16.00	20.00	Feet (distance to other Slab Edge Support	£
	Г _с Conn Type	3.00 D	3.00 D	Ksi (D= Dowel, C= Continuous)	G -2 -
	<u>Concrete :</u>	$f'_c = f_y = \rho_c =$	3.25 60.00 0.150	Ksi Ksi kip/ft^3	
I	Reinforcement:	d _c = d _c = =	2.00 3.00 2.00	inches (bar clearance - top) inches (bar clearance - bottom) inches (bar clearance - sides)	Width (feet)

	Orientation	Bar Size	N Bars	Bottom Layer	d (inches)	Bar Spacing (inches)	Bar Diameter (inches)	Per Bar (in^2)	Total (in^2)
Top Mot	х	6	7	х	33.25	3.21	0.75	0.44	3.08
T OP IVIAL	у	5	60		32.75	4.19	0.63	0.31	18.60
Rottom Mat	х	6	7		31.63	3.21	0.75	0.44	3.08
Bottom Mat	y	5	60	х	32.38	4.19	0.63	0.31	18.60

1. Design of Slab-to-Footing Connections

Use No. 4 bars @ 8.00 inches on-center for Slab-to-Footing Connections

2. Lateral Resistance of Foundation

Foundation OK for Sliding; Use 0.50 foot deep Shear Keys at Footing ends

3. Soil Pressure due to Applied Loads

Footing Bearing stress OK

5. Adequacy of Footing - Shear

Г

Footing OK for Shear

6. Adequacy of Footing - Flexure

7 - # 6 Bars OK for Longitudinal Flexure;	
Extend T & B bars at edge of footing, with Hooks a	minimum of 10.0 inches long.
60 - # 5 Bars OK for Transverse Flexure	

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 LOADS AND DESIGN

2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

SMRF FOOTING DESIGN

Assumptions 1. Footing is assumed rigid.

- Column loads are located in transverse center of footing.
- Concrete is Normal Weight Concrete with uncoated bars.

 $\mu = 0.35$ (Coefficient of Friction)

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

2. Lateral Resistance of Foundation

2A. Longitudinal Loading

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 LOADS AND DESIGN

2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

4. Applied Loading and Demands on Footing - Strength Loads Right Soil Bearing, Shear, and Flexure Service and Strength Loading Left Colum Between Left End Column Right End Centerline Columns Centerline 10 Location (feet) 4.38 0.00 28.75 0 24.38 Load (kips) -15 46 V_L (kips) 0 -6 22 ٥ V_R (kips) 12 -33 0.00 30 M_L (kip-ft) 0 13 -83 -73 -5 M_R (kip-ft) 11 -73 -2.14 15 -10 -15 5. Adequacy of Footing - Shear -20 5A. Check of Flexural/One-Way Shear (ACI 318-14 Sect 13.2.7.2 and 8.4.3.1) -25 @ x = 24.38 Shear demands: V_{max} = 33 Kips feet $V_u = V_{max} - q (d + C/2)$ -30 Where $V_{max} =$ 33 Kips -35 q_u = 8.06 Kips/ft @ x = 24.38 feet -40 $d = h_f - d_c - d_b$ 3.00 feet and $h_{i} =$ = 36.00 inches -45 $d_c =$ 3.00 inches -50 d_b = 0.625 inches 32.38 d = inches -55 2.70 feet -60 C = 0.00 feet -65 V_u = 12 Kips -70 b) Shear Strength provided by Concrete (ACI 318-14 Sect 22.5.5.1) $\phi V_c = \phi 2 f'_c^{0.5} b_w d$ Where $\phi =$ 0.75 (Shear; ACI 318-14 21.2.1) -75 $f'_c =$ 4,000 psi 2.5 $b = L_v =$ feet Mat Foundation - Punching Shear 30.0 inches = d = 32.38 inches 10 $\phi V_c =$ 92 kips OK, > Vu 5 5B. Punching/Two Way Shear (ACI 318-14 Sections 22.5.10.5.1, 22.6.4.1) 0 A. Left Column V., = Shear demands: 12 Kips • • • • . a) Failure Perimeter -10 Where N_{fpy} = $b_0 = N_{fpy} b_1 + N_{fpx} b_2$ 0 (Number of Failure Planes in Y direction) $b_1 = \ X_1 + 0.5 \ (C_{2x} + d) \quad <= \ C_{2x} + d$ and $X_1 =$ 4.38 feet = 52.50 inches C_{2x} = 9.00 inches d = 32.38 inches 41.38 inches b1 = $N_{fpx} =$ 2 (Number of Failure Planes in X direction) and $C_{2y} =$ $b_2 = \quad C_{2y} + d \quad < = \quad L_y$ 8.28 inches d = 32.38 inches $L_y =$ 30.0 inches 30.00 inches b₂ = b₀ = 60.0 inches

NBSD-Software.Com

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 LOADS AND DESIGN

2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

B. Right Column

NBSD-Software.Com

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

SMRF SPREAD FOOTING DESIGN - SM ACI 318-14 LOADS AND DESIGN 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT - SMRF 1 AT GRIDLINE A

7. Footing Reinforcement Summary

Footing Parameters :

	Footing Size :	00.0	61								
	L _x =	28.8	feet								
	Ly =	2.5	feet								
	$n_{\rm f} =$	3.0	leet								
Reinforcem	ent Summary:	d _c =	2.00	inches (bar o	clearance - top))					
		=	3.00	inches (bar o	clearance - bott	tom)					
		=	2.00	inches (bar d	clearance - side	es)		r			-
			1	1					Bar	Area	4
		Orientation	Bar Size	N Bars	Bottom Layer	d (inches)	(inches)	(inches)	(in^2)	l otal (in^2)	
	Ten Met	х	6	8	x	33.25	3.61	0.75	0.44	3.52	1
	гор мат	у	5	78		32.75	4.42	0.63	0.31	24.18	Note: Used for placing top bars only.
	Bottom Mat	х	6	8		31.63	3.61	0.75	0.44	3.52	_
		у	5	78	х	32.38	4.42	0.63	0.31	24.18	
	Interconne Note : Side :	cted Slab at Slabs at side Left	Sides: es are used or Right	nly to reduce so	bil bearing pres	sure; footing is	designed to ta	ake all loads.			
	ť		4.00	inches (Slat	o Thickness)						Foundation Cross-Section
	Х		25.00	Feet (distanc	e to other Slab	Edge Support					Foundation Cross-Section
	f'c		2.50	Ksi							
	Conn Type		D	(D= Dowel	, C= Continuou	ıs)				2	
Use 1 - Sided RC Slab 4.00" thick, with No. 4 bars @ 8.00 inches on-center for Slab-to-Footing Connections.											
2. Lateral Resistanc	e of Foundati	on								0	
				Foundation	OK for Sliding	g				ੑਁ	
3 Soil Pressure due	to Applied L	ade							feet		
5. John ressure due		2005							4		
	$\sigma_b =$	1.98	Ksf	Note	$\sigma_{allow} =$	2.00	ksf (allowable	e bearing pressu	re)		

5. Adequacy of Footing - Shear

Footing OK for Sh 6. Adequacy of Footing - Flexure

Width (feet)

-2

-4

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 FOOTING DESIGN - FIXED BASE COLUMN CONDITION 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

SMRF FOOTING DESIGN - FIXED COLUMN

1. Fixed Base Connection Parameters

Footing Size :		
L _x =	28.75	feet
$L_y =$	2.50	feet
h _f =	3.00	feet

Base Plate Dimensions:

Note: Base Plate design done elsewhere.

		•	
	N =	18.00	inches (Base Plate - Length)
	B =	16.00	inches (Base Plate - Width)
	t _{PL} =	0.75	inches (Base Plate - Thickness)
Column:	W8x67		
	d =	9.00	inches (Wide Flange - Depth)
	$b_f =$	8.28	inches (Wide Flange - Width)
	$t_{\rm f} =$	0.94	inches (Wide Flange - Thickness)
	$Z_x =$	70.1	in ³ (Wide Flange - Plastic Section)
	A =	19.70	in ² (Wide Flange - Area)
	F _y =	50	Ksi
	<u>Concrete :</u>	$f'_c = f_y = \rho_c =$	4.00 Ksi 60.00 Ksi 0.150 kip/ft ³
Re	einforcement:	d _c = =	2.00 inches (bar clearance - top) 3.00 inches (bar clearance - bottom)

Stirrup to	Reinf Bar Rat	<u>io:</u> 1:	2	Longitudina	al Bars				
				-				Bar	Area
	Orientation	Bar Size	N Bars	Bottom Layer	d (inches)	Bar Spacing (inches)	Bar Diameter (inches)	Per Bar (in^2)	Total (in^2)
Top Mat	х	6	8	х	33.25	3.61	0.75	0.44	3.52
Bottom Mat	х	6	8		31.63	3.61	0.75	0.44	3.52
Shear	у	4	4	-	-	6.00	0.50	0.20	-

= 2.00 inches (bar clearance - sides)

<u>Soil Parameters :</u> Soil density = 120 pcf $\sigma_{allow} = 2.00$ ksf (allowab

- $\sigma_{allow} = 2.00$ ksf (allowable bearing pressure) $\sigma_{p} = 0.30$ ksf/ft (Passive Soil Pressure)
 - $\mu = 0.35$ (Coefficient of Friction)

 $\phi_v = 0.75$

Design Parameters :

 $\Omega = 3.00$ (Overstrength Factor - SMRF)

(Shear; ACI 318-14 21.2.1)

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

NBSD-Software.Com

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 FOOTING DESIGN - FIXED BASE COLUMN CONDITION 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

2. Additional Required Reinforcement at Columns Foundation Cross-Section - Flexural a) Column Probable Expected Flexural Capacity **Reinforcement at Columns** M_{FB} = 100% of Column Flexural Capacity in³ (Wide Flange - Plastic Section) $= 1.0 Z_x F_y$ Where $Z_x =$ 70.1 $F_y =$ 50 Ksi M_{FB} = 3,505 Kip-in 292.1 Kip-ft = 0 0 10 2 b) Maximum Reinforcement Ratio (ACI 318-14 Sect 22.2.2.4) $\rho_{\rm r} = \frac{0.85 f'_{\rm c}}{f_{\rm y}} \left[1 - \sqrt{1 - 1} \right]$ 2 M " Depth (feet) $0.765 \text{ b d}^2 \text{ f'}_c$ -1 Where f'_c = 4.00 Ksi fy = 60.00 Ksi $M_u = M_F + M_{FB}$ for $M_F =$ 881 kip-in (Footing Flexural Demands) -2 $M_{FB} =$ 3,505 (Column Flexural Capacity) kip-in M_u = 4,386 kip-in $b = L_y =$ 2.5 feet -3 30 inches Width (feet) $d_x =$ 31.63 inches $\rho_r =$ 0.00277 c) Reinforcement Ratio Provided $\rho_w \equiv \, A_{sx} / (L_y \; d_x)$ Where $A_{sx} = A_F + A_{FB}$ Where $A_F =$ 3.52 in² (Reinforcement Provided - Footing Flexure) A_{FB =} Reinforcement Required for Resisting Fixed Base Column Flexural Capacity = (N-1) A_b for N = 8 bars provided in² 4 bars 0.20 $A_b =$ for in² (Bar Diameter) Note: d_b = 0.50 in² $A_{FB} =$ 1.40 $A_{sx} =$ 4.92 in² 2.5 feet = L_B = 30.0 inches d = 31.63 inches 0.00519 (reinforcement ratio provided) D/C Batio = (Demand to Capacity Ratio - Flexure) $\rho_{\rm w} =$ Note: 0.54 ок

Use Additional 7 - # 4 Bars for Column Flexure with DC Ratio = 0.54

Project	2525 Balboa, S.F.
Job No.	202203.10
Ву	AL
Date	03/22/25
Sheet	of

SMRF SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE A ACI 318-14 FOOTING DESIGN - FIXED BASE COLUMN CONDITION 2525 BALBOA STREET, S.F. - SEISMIC RETROFIT

d) Flexural reinforcement development length (ACI 318-14 Sect 25.4.2.2)

Bar Size = 6 (Max of Top or Bottom Longitudinal Flexural Bars)

d_s = 2.86 inches inches (Clear spacing provided)

d_c = 2.00 inches (Clear Cover provided)

	Provided (inches)	Upper Limit	Lower Limit	
Clear Cover	2.00	d _b = 0.75 inches <mark>OK</mark>	2 d _b = 1.50 inches <mark>OK</mark>	
Clear Spacing	2.86	2 d _b = 1.50 inches OK	4 d _b = 3.00 inches <mark>NG</mark>	Note: Normal Weight Concrete with uncoated bars is assumed.
	No. 6 and Smaller Bars	$l_{d} = \left(\frac{f_{y}\Psi_{t}\Psi_{e}}{25\lambda\sqrt{f_{c}}}\right)d_{b}$	$l_{d} = \frac{3}{50} \left(\frac{\mathbf{f}_{y} \Psi_{t} \Psi_{e}}{2.5 \lambda \sqrt{\mathbf{f}_{c}}} \right) \mathbf{d}_{b}$	Where $f_y = 60.00$ Ksi $\Psi_t = 1.00$ (ACI 318-14 Table 25.4.2.4; top bars)
	No. 7 and Larger Bars	$l_{d} = \left(\frac{f_{y} \Psi_{t} \Psi_{e}}{20 \lambda \sqrt{f_{c}}}\right) d_{b}$	$l_{d} = \frac{3}{40} \left(\frac{f_{y} \Psi_{t} \Psi_{e}}{2.5 \lambda \sqrt{f_{e}}} \right) d_{b}$	$Ψ_e$ = 1.00 (ACI 318-14 Table 25.4.2.4; uncoated reinford λ = 1.00 (ACI 318-14 Table 25.4.2.4; λ = 0.75 for LW(
	Values	$l_{d} = 37.95 d_{b}$ $l_{d} = 28.5$ inches	$l_{d} = 22.77 d_{b}$ $l_{d} = 17.1 inches$	$f_c = 4.00$ Ksi $d_b = 0.75$ inches for No. 6 bar

Note: Splices in Seismic Force Resisting systems in Seismic Design Categories D - F may NOT be reduced per ACI 318-14 Sect 25.4.10.2.

= > $I_d = 28.5$ inches

ii) Available Anchorage length at Column ends

Note: The following dimensions are obtained from the first page (Footing Parameters) of the first worksheet.

$L_{da} = x_f - d_{cs}$	> l' _d	Where $x_f = Min (x_1, L_x - X_2)$	for $x_1 =$	4.38	feet (distance from edge of footing to $C_1 \mbox{ Centerline})$
			L _x =	28.75	feet (longitudinal Length)
		= Min (4.38, 4.38	3) X ₂ =	24.38	feet (distance from edge of footing to $C_{\rm 2}$ Centerline)
		x _f = 4 = 52	.38 feet 2.50 inches		
		$d_{cs} = 2.00$ inch	es (bar clearance - sides)		
L	_{da} = 50.50	inches			
			Bars have adequ	ate Devo	elopment Length

SAMPLE WORK - ASCE 7-10 LOADS EARTHQUAKE LOADS

Sample work shown here includes determination of the Seismic Design Category (SDC) and Earthquake (EQ) Forces for a building project.

North Bay Seismic Design Structural Analysis and Design PO Box 55, Inverness CA 94937 Tel/Fax (415) 663-8161 www.NorthBaySeismicDesign.com

SEISMIC DESIGN CATEGORY - MAPPED ACCELERATION VALUES ASCE 7-10 SECTION 11.4 - SEISMIC GROUND MOTION VALUES 833 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

1. Spectral Response Accelerations (USGS Website)

Longitude:	-122.443297° W
Latitude:	37.753339° N

	Period	Sa
	(secs)	(g's)
Ss	0.20	1.645
S ₁	1.00	0.757

2. Site Class and Occupancy Category (ASCE 11.4)

1 =

3. Approximate Fundamental Period (Section 12.8.2)

47.8

1.00

N-S

Direction Direction

0.020

0.75

feet (Building Height)

i) Site Class = D

Occupancy Category =

ii) Occupancy Category

 $h_n =$

<u>Note:</u> Where soil properties are not known in sufficient detail to determine Site Class, Site Class D shall be assumed.

PROJECT SEISMIC

Table 11.5-2			
Occupancy			
Category	1		
l or ll	1.00		
	1.25		
IV	1.50		

DESIGN CATEGORY

ASCE 7-10 Table 12.8-2					
System	Ct	х			
Steel MRF	0.028	0.80			
Concrete					
MRF	0.016	0.90			
EBF	0.030	0.75			
All other					
systems	0.020	0.75			

г =	C.	h ^x	(12.8-7)	
a =	U _t	II n	(12.8-7)	

C_t

х

Thus, T _a	=	0.36	seconds (N-S Direction)
	=	0.36	seconds (W-E Direction)

II (ASCE 7-10 Table 1.5-1)

W-E Direction

0.020

0.75

Importance Factor (Table 11.5-2)

4. Design Spectral Acceleration Parameters (ASCE 11.4)

a) At Short Periods

- $S_{DS} = 0.67 S_{ms} = 0.67 F_a S_s$
- $S_s = 1.645$ g's (from USGS website)
- $Fa = y_1 + ((y_2 y_1)/(x_2 x_1))^*(S_1 x_1)$

x ₁ =	1.00	secs	y ₁ =	1.00
x ₂ =	1.25	secs	y ₂ =	1.00

	F _a =	1.000	(Interpolated Site Coefficient Value - Table 11.4-1)
--	------------------	-------	--

	Table 11.4-1 SITE COEFFICIENT, Fa					
	Mapped Maxi	mum Conside	red Earthqua	ke Spectral	Response	
	Acc	eleration para	meter at Sho	rt Period (S	s)	
Site Class	0.25	0.50	0.75	1.00	1.25	
A	0.80	0.80	0.80	0.80	0.80	
В	1.00	1.00	1.00	1.00	1.00	
С	1.20	1.20	1.10	1.00	1.00	
D	1.60	1.40	1.20	1.10	1.00	
E	2.50	1.70	1.20	0.90	0.90	
F	See Section 11.4.7					
F _a Values	1.60	1.40	1.20	1.10	1.00	

S_{DS} = 1.097 g's (Site Design Coefficient - Short Period)

SEISMIC DESIGN CATEGORY - MAPPED ACCELERATION VALUES ASCE 7-10 SECTION 11.4 - SEISMIC GROUND MOTION VALUES 833 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

							Table 11.4-2	2 SITE COEF	FICIENT, F	v
5. Design Spec	ctral Acceler	ation Param	eters - Continued			Mapped Max Acc	imum Conside eleration para	ered Earthqua meter at 1-se	ake Spectral c Period (S	Response 1)
b) At T = 1.0 S	econds				Site Class	0.10	0.20	0.30	0.40	0.50
					A	0.80	0.80	0.80	0.80	0.80
S _{D1} =	0.67 S _{m1}	$= 0.67 F_v S_1$			В	1.00	1.00	1.00	1.00	1.00
					С	1.70	1.60	1.50	1.40	1.30
S ₁ =	0.757	g's (from	JSGS website)		D	2.40	2.00	1.80	1.60	1.50
					E	3.50	3.20	2.80	2.40	2.40
Fv =	y ₁ +((y ₂ -y ₁)/(x ₂ -x ₁))*(S ₁ -x ₁)	1		F		Se	e Section 11	4.7	
	0.40		4.50			0.40	0.00	4.00	4.00	4.50
x ₁ =	0.40	secs	$y_1 = 1.50$		F _v values	2.40	2.00	1.80	1.60	1.50
x ₂ =	0.50	secs	y ₂ = 1.50			Cite Coeffici		a an d Dania da		
F _v =	1.500	(Interpola 11.4-2)	nted Site Coefficient Value - Table	•	4.00				Site	Class A
					3.00	\rightarrow			Site	Class B
				<u> </u>	2.50				Site	Class C
				j.6	2.00				Site	Class D
				- L	1 50				Site	Class E
S _{D1} =	0.757	g's (Site	Design Coefficient - at 1-Second		1.00				🔺 Fa V	alue
		Period)			1.00					
					0.50					
					0.00 +		+			
					0.00	0.20 0	0.40 0.6	60 0.8	0	
						S1 (s	econds)			
6. Seismic Des	sign Categor	y (ASCE 11.	<u>6)</u>							
Occupa	ncy Category	/= 11				Occupancy	S ₁ < 0	.75 g's	S ₁ >=	0.75 g's
	S	= 0.757	a's (from USGS website)				-			-
		0.757	ge (nem cece nebene)				Per Tables 1	1-6-1 and 11		=
							6	-2		-
							Ĭ	-		-
a) At Short Pe	riods									
S _{DS} =	1.097	g's (Site I	Design Coefficient - Short Period)			Table 11.6-1	Seismic Desi	gn Category	Based on Slarameter	hort Period
SDC =	D	(Seismic	Design Category, per Table 11 6-	1)			ricoponico / i		nancy Cate	aory
000 -	D	(ocioinio	besign eutogery, per rubie rite	.,	1	Value	of S _{DS}			IV
	$T_c = S_{D1}/S_{D2}$		Where $S_{D1} = 0.757$ g/s			Spc <	0 167	A	A	A
	5 01-00		$S_{pq} = 1.097$ d's			0 167 9	S== <= 0.33	B	B	C
	т	- 0.60				0.22 + 0		С С	с С	
	I	s = 0.09				0.33 <= 3	DS <=0.30	0		D
	Conditions	a waa Tabla 4	4.6.4. Only (Castion 44.6);			0.50 <	<= S _{DS}	D	D	D
	Conditions to	o use Table 1	1.6-1 Only (Section 11.6):	Vaa	No	٦				
				res	INO	1				
	1. S ₁ < 0.75	seconds			x	4				
2. In both orthogonal directions, $0.80 \text{ T}_{s} = 0.80 \text{ S}_{D1}/\text{S}_{DS} \ge \text{T}_{a}$			x		(Note: 0.80 Ts = 0.80*Sd1/Sds = 0.55 secs ≥ Ta = 0.36 (N-S), ≥ Ta = 0.36 (W-E)				: 0.36 (N-	
3. In both orthogonal directions. $T \leq T_{\circ}$			x		(Note [·] T = T	a per 12 8 2)				
4 Equation $C_{r} = S_{ro} I/R$ (12.8-2) is used			×		(a poi 121012)				
5. Dianbragms are rigid per 12.3.1, or if flexible			×		-					
	snan < 40 ft	ins are rigid p				1				
			Need to use Table 11.6-2	too!						
<u>b) At T = 1.0 S</u>	econds				1	Table 11.6-	2 Seismic Des	sign Category	Based on	1-Second
S	0 757	a'e (Sita I	Design Coefficient at 1 Second D	ariod)		Fe			nancy Cate	aory
3 _{D1} =	0.757	ys (Sile I	Design Openicient - at 1-Second Pe	110u)		Value	of Sec			yory IV
800		(Seism'-	Decian Cotogon: see Table 44.0	2)	_	value	0.067			IV
SDC =	U	(Seisinic	Design Calegory, per Table 11.6-	~)		S _{D1} <	0.007	A	A	A
						0.067 <= S	o _{D1} <=0.133	В	В	С
c) Seismic Des	sign Categor	ry - Governir	g			0.133 <= \$	S _{D1} <=0.20	С	С	D

SDC = Ε (Seismic Design Category) D

D

D

 $0.20 <= S_{D1}$

North Bay Seismic Design Structural Analysis and Design PO Box 55, Inverness CA 94937 Tel/Fax (415) 663-8161 www.NorthBaySeismicDesign.com

BASE SHEAR AND VERTICAL FORCE DISTRIBUTION ASCE 7-10 CHAPTER 12 - SEISMIC REQUIREMENTS FOR BUILDING STRUCTURES 833 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

1. Seismic Parameter Data

Occupancy Category = II (ASCE 7-10 Table 1.5-1)

SDC =	E	(Seismic Design Category)

S _{DS} =	1.097	g's (Site Design Coefficient - Short Period)
S _{D1} =	0.757	g's (Site Design Coefficient - at 1-Second Period)

S₁ = 0.757 g's (from USGS website)

	Loading Direction		
	N-S	E-W	
LFRS	TMBR SW	TMBR SW	
Ta	0.36	0.36	seconds (Approximate Fundamental Period)
R	6.5	6.5	Response Modification Factor (Table 12.2-1)

- $T_L = 8.00$ Seconds (Long Period Transition Period from Figure 22-15)
- I = 1.00 Importance Factor (Table 11.5-2)

2. Determination of Seismic Response Coefficient, Cs (Section 12.8.1.1)

C _s =	S _{DS} I/R	(12.8-2)		Where S _{DS} I R	= 1.097 = 1.00 = 6.5	g's (Site Desig Importance Fac N-S Response	n Coefficient - ctor Modification F	Short Period) Factor
=	C _s = =	0.169 (N-S 0.169 (W-E	Direction)		= 6.5	W-E		
	Max C _s values:							
	$C_{s} = \frac{S_{D1} I}{T R}$	for $T \leq T$	L (12.8 - 3)		Where S _{D1} =	0.757 1.00	g's (Site Desi Importance Fa	gn Coefficient - Short Period) actor
	$C_{s} = \frac{S_{D1}}{T^{2}}$	$\frac{\Gamma_{L} I}{P}$ for T	> T _L (12.8 -	- 4)	R = =	6.5 6.5	Response Mo W-E	dification Factor
	1	К			T = T _a = =	0.36 0.36	seconds (App seconds (roximate Fundamental Period - N-S direction) " - W-E Direction)
	=	$C_{s max} = 0$ = 0.	321 (N-S Max 321 (W-E Max	Cs Value) Cs Value)	T _L =	8.00	Seconds (Lon	g Period Transition Period from Figure 22-15)
	Min Cs values:							
	C _s = 0	0.044 S _{DS} I > 0.048	0.01 (12.8-5)			Where S _{DS} =	1.097 1.00	g's (Site Design Coefficient - Short Period) Importance Factor

$C_{s} = \frac{0.5S_{1}I}{R}$	for $S_1 \ge 0.6$ g's	(12.8 - 6)
= 0.058		

C _s =	0.058	(N-S Min Cs Value)
=	0.058	(W-E Min Cs Value)

l =	1.097 1.00	g's (Site Design Coefficient - Short Peri Importance Factor
Where S ₁ = I = R = =	0.757 1.00 6.5 6.5	g's (from USGS website) Importance Factor Response Modification Factor W-E

PROJECT SEISMIC

DESIGN FORCES

Seismic Coefficient Cs - Governing Value:

C _s =	0.169	g's	(N-S Direction)
=	0.169	g's	(W-E Direction)

Project	833 Corbett Avenue, San Francisco
Job No.	201805.10
Ву	AL
Date	03/29/18
Sheet	of

North Bay Seismic Design Structural Analysis and Design PO Box 55, Inverness CA 94937 Tel/Fax (415) 663-8161 www.NorthBaySeismicDesign.com

BASE SHEAR AND VERTICAL FORCE DISTRIBUTION ASCE 7-10 CHAPTER 12 - SEISMIC REQUIREMENTS FOR BUILDING STRUCTURES 833 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

3. Determination of Base Shear, V (Section 12.8)

V = (C _s W	(12.8-1)	Where C _s = = W =	0.169 0.169 375	g's g's kips	(N-S Direction) (W-E Direction) (Building Weight)
V = =	63 63	kips kips	(N-S Direction) (W-E Direction)			

4. Vertical Distribution of Seismic Forces (Section 12.8.3)

$$F_{x} = C_{vx} V \qquad (12.8 - 11)$$

$$C_{vx} = \frac{W_{x} h_{x}^{k}}{\sum_{i=1}^{n} W_{i} h_{i}^{k}} \qquad (12.8 - 12)$$

 $W_x =$ See Below

1.00

1.00

Where K =

=

$h_x = See Below$

			N-S and E-W Directions									
Level	Story Weight, W _x (kips)	Height, h _x (feet)	W _x H ^k _x	Lateral Force, F _x (kips)	Story Shear, V _x (kips)	V _x * h _x (kip-ft)	Overturning Moment, M _{ot} (kip-ft)	W _x H ^k x	Lateral Force, F _x (kips)	Story Shear, V _x (kips)	V _x * h _x (kip-ft)	Overturning Moment, M _{ot} (kip-ft)
R	41	47.8	1,970	11	11	531	531					
6	86	38.3	3,290	19	30	1,136	1,667					
5	101	28.8	2,892	16	46	1,323	2,990					
4	60	28.5	1,723	10	56	1,589	4,578					
3	53	19.0	1,006	6	61	1,167	5,745					
2	33	9.5	317	2	63	600	6,345					

BASE SHEAR AND VERTICAL FORCE DISTRIBUTION ASCE 7-10 CHAPTER 12 - SEISMIC REQUIREMENTS FOR BUILDING STRUCTURES 833 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

5. Determination of Diaphragm Forces, Fpx (Section 12.10.1.1)

$F_{px} = \frac{\sum_{i=x}^{n} F_{i}}{\sum_{i=x}^{n} W_{i}} W_{px}$	(12.10 - 1)	Where $W_i = W$ $W_{px} = W$	/eight trib /eight trib	outary to I outary to 1	evel i the diaphragm at Level x		
Minimum Value:	$F_{px} = 0.20 \text{ S}_{DS} \text{ I } \text{W}_{px}$	F _{px} =	0.2193	W_{px}	Where S_{DS} =	1.097	g's (Site Design Coefficient - Short Period)
Maximum Value:	$F_{px} = 0.40 \text{ S}_{DS} \text{ I } \text{W}_{px}$	F _{px} =	0.4387	W _{px}	l =	1.00	Importance Factor

			N-S and E-W Directions									
Level	W _{px} = W _x (kips)	Height, h _x (feet)	ΣW _x (kips)	F _x (kips)	ΣF _x (kips)	Σ F _x / Σ W _x	F _{px} (kips)	ΣW _x (kips)	F _x (kips)	ΣF _x (kips)	Σ F _x / Σ W _x	F _{px} (kips)
R	41.3	47.75	41	11	11	0.2695	11					
6	86.0	38.25	127	19	30	0.2333	20					
5	100.6	28.75	228	16	46	0.2193	22					
4	60.4	28.50	288	10	56	0.2193	13					
3	52.9	19.00	341	6	61	0.2193	12					
2	33.4	9.50	375	2	63	0.2193	7					

SAMPLE WORK - ASCE 7-10 LOADS WIND DESIGN - MWFRS

Sample work showing snapshots of 4 different ASCE 7-10 Wind Load procedures, unrelated from one page to the next and for different buildings and wind speed regions.
Project	SE Exam 2017	North Bay Seismic Design
Job No.	-	Structural Analysis and Design
Ву	AL	PO Box 55, Inverness CA 94937
Date	06/05/17	Tel/Fax (415) 663-8161
Sheet	of	www.NorthBaySeismicDesign.com

MAIN WIND FORCE RESISTING SYSTEMS - WALLS AND ROOF

ASCE 7-10 WIND PROVISIONS - CHAPTER 27 - DIRECTIONAL PROCEDURE PART 1: ENCLOSED, PARTIALLY ENCLOSED, AND OPEN BUILDINGS OF ALL HEIGHTS WIND DESIGN - CHAPT 27 - 1 PROBLEM SE EXAM REVIEW 1 : SP2 (ALAN WILLIAMS 1988 A-3)

						WIND DESIGN - CHAPT 27 -
Risk Category:	II	(ASCE 7-10 Tat	ole 1.5-1)			
Requirements :	- Building is Rig	gid per Section 6.2, eva	aluated per C6	16		
	- Building does etc)	not have complex res	ponse characte	ristics (vo	ortex chedding	
	- Building is not	t sited at a location wh	ere channeling	effects or	r buffeting in t	he he
	wake of upwind	d obstructions need to	be considered.			H1 h +
1. Building Parame	eters					
Site Date						
Sile Dala	в	(Evposure Cotos	ARCE	06 7 0)		
V =	110	mph (Basic Wind	d Speed, ASCE	7-10 Fig	26.5-1A)	
D. Haller Discoursions						←
Building Dimensions			the descented.			
vertical: H1 =	67.00	feet	Horizoniai:	60.00	feet	The shoc p shoc p shoc p
H2 =	0.00	feet	b =	0.00	feet	WIND
110	07.00	fact	C =	0.00	feet	$q_z OC_p$ $q_h OC_p$ z b q_h
H3 = H4 =	0.00	feet	Notes: -	f b = 0, G	able/Hip Root	
			-	f b = c =	0, Monoslope	Roof $ - L - $
				Otherwis	se, Mansard H	
		W = 66.00 for $L = 60.00$ for $L = 60.00$	eet (Transverse eet (Longitudina	building al building	dimension) dimension)	GROLL, HIP HOOT
			··· (··g····		,,	11111111111 0.9C - T - 9.6C
Root Angle θ =	0.00	degrees (Windw degrees (Leewa	ard Side) rd Side)			
			,			
Mean Roof He	eight (ASCE 7-10	0 Section 26.2):				er och
H _{mr} =	AVERAGE (H _e	$_{\theta}$, H_{max}), for $\theta > 10$ degree	ees, otherwise l	le		
Where H _{max} =	67.00 67.00	ft (maximum elev	vation)			
H -	00.80	ft (Maan Roof Ho	oight)			PLAN ELEVATION ELEVATION
i imr –	00.00	it (Mean ricor ric	signit)			MONOSLOPE ROOF (NOTE 4)
Height to Base dime	nsion ratios					
h/L =	1.13	(Transverse)	Where h =	68.00	feet	
h/W =	1.03	(Longitudinal)	L =	60.00	feet	
			W =	66.00	teet	
						11111111111111111111111111111111111111

h/L = h/W =	1.13 1.03	(Transverse) (Longitudinal)	Where h = L = W =	68.00 60.00 66.00	feet feet feet

2. AISC 7-10 Main Wind Force Resisting System - Part 1 (Figure 27.4-1)

Wall Pressure Coefficients, C _p								
Surface	L/B	Ср	Use With					
Windward Wall	All Values	0.8	qz					
Leeward Wall	0-1 2	-0.5 -0.3	q _h					
	≥ 4	-0.2						
Side Walls	All Values	-0.7	q _h					

Roof Pressure Coefficients, Cp, for use with q _h													
				Leeward Roofs									
Wind Direction					An	igle, θ (Degre	es)	s)				Angle, θ (Degrees)	
		h/L	10	15	20	25	30	35	45	≥ 60 #	10	15	≥ 20
	≤		-0.70	-0.50	-0.30	-0.20	-0.20	0.00	0.00				
		0.25	-0.18	0.00	0.20	0.30	0.30	0.40	0.40	0.01 θ	-0.3	-0.5	-0.6
Normal to Ridge			-0.90	-0.70	-0.40	-0.30	-0.20	-0.20	0.00				
for $\theta \ge 10^{\circ}$		0.50	-0.18	-0.18	0.00	0.20	0.20	0.30	0.40	0.01 θ	-0.5	-0.5	-0.6
	≥		-1.30	-1.00	-0.70	-0.50	-0.30	-0.20	0.00				
		1.0	-0.18	-0.18	-0.18	0.00	0.20	0.20	0.30	0.01 θ	-0.7	-0.6	-0.6
			Horizontal Distance from Windward Edge			Cp (+)	Ср (-)						
Normal to Ridge	≤		0 to h/2 **				-0.90	-0.18					
for θ < 10°,		0.5	h/2 to h				-0.90	-0.18	** Value car	** Value can be reduced linearly with area over			
Parallel to Ridge			h to 2h				-0.50	-0.18	whi	ch is applical	ole as follow	s:	
for all 0			> 2h				-0.30	-0.18	Area	(sq ft)	Reductio	n Factor	
	≥		0 to h/2 **				-1.30	-0.18	≤	100	1.	0	
		1.0							2	00	0.	9	
			> h/2				-0.70	-0.18	≥1	000	0.	8	
Notary							lotation						

test Plus and minus signs signify pressures acting toward and away from the surfaces, respectively. Linear interpolation is permitted for values of L2B. Ar. and 0 other than shown. Interpolation shall only be carried out between values of the same sign. Where no value of the same sign is given, assume 0.0 for interpolation purposes. Where two values of C₂ are listed, this indicates that the windward roof alope is subjected to either positive or negative pressures and the roof structure shall be designed for both conditions. Interpolation for intermolation ratios of NL, in this case shall only be carried out between C₂ values of like sign. For monoclope roofs, entire roof surface is either a windward or leward surface. For encode roofs, entire roof surface is either a windward or leward surface. For Roothe buildings use appropriate C₂ as determined by Section 6.3.8. Refer to Figure 6-7 for domes and Figure 6-8 for arched roofs. 1.

3

456

ng, in fect s), except neters). eight shall be oof height in

nds per squ foot (N/m2), evaluated at respective height

gle of plane

We have blockly the off rest of power derival, in degrees. If the interpret of the second se 9

#For

MANSARD ROOF (NOTE 8)

PLAN

H4

НЗ

₹ bGC

4 h GCp

ELEVATION

Project	SE Exam 2017	North Bay Seismic Design
Job No.	-	Structural Analysis and Design
Ву	AL	PO Box 55, Inverness CA 94937
Date	06/05/17	Tel/Fax (415) 663-8161
Sheet	of	www.NorthBaySeismicDesign.com

MAIN WIND FORCE RESISTING SYSTEMS - WALLS AND ROOF WIND DESIGN - CHAPT 27 - 1 ASCE 7-10 WIND PROVISIONS - CHAPTER 27 - DIRECTIONAL PROCEDURE PART 1: ENCLOSED, PARTIALLY ENCLOSED, AND OPEN BUILDINGS OF ALL HEIGHTS PROBLEM SE EXAM REVIEW 1 : SP2 (ALAN WILLIAMS 1988 A-3)

5. Lateral Loading Design Values - Transverse Loading (Continued)

iii) Cp Values Normal to Ridge with θ =0.00 °:

Horiz. Roof Distan	се	Windward	Roof	Top, Leeward Roof		
(feet)	(feet)	C _p (+)	C _p (-)	C _p (+)	C _p (-)	
0	34	-1.04	-0.18	-	-	
34	60	-0.70	-0.18	-	-	

b) Determination of Wind Pressures

			1	Wall Pressure	s				
						External	Internal	Net	Net
Londod Curfood	Height Above	K	qz	<u> </u>	qi	Pressure	Pressure	Pressure	Pressure ·
Loaded Surface	Ground, Z (ft)	R _Z	(psf)	U _p	(psf)	q _z *G*Cp	q _h *(GC _{pi})	+(GC _{pi})	(GC _{pi})
						(psf)	(psf)	(psf)	(psf)
Windward Wall	15	0.57	15.01	0.80	15.01	10.21	4.03	6.18	14.23
	20	0.62	16.32	0.80	16.32	11.10	4.03	7.07	15.13
	25	0.66	17.38	0.80	17.38	11.82	4.03	7.79	15.85
	30	0.70	18.43	0.80	18.43	12.53	4.03	8.50	16.56
	40	0.76	20.01	0.80	20.01	13.61	4.03	9.58	17.64
	50	0.81	21.33	0.80	21.33	14.50	4.03	10.47	18.53
	60	0.85	22.38	0.80	22.38	15.22	4.03	11.19	19.25
	70								
	80								
	90								
	100								
	120								
	140								
	160								
	180								
	200								
	250								
	300								
	350								
	400								
	450								
	500								
Top, Leeward Wall	67	0.85	22.38	-0.50	22.38	-9.51	4.03	-13.54	-5.48
Side Walls	68	0.85	22.38		22.38	0.00	4.03	-4.03	4.03

Note: Velocity Pressure Exposure Coefficients, Kh and Kz, obtained from ASCE 7-10 Table 27.3-1.

		Horiz. Roof	Distance			R	oof Pressure	es				
Loaded Surface	Wind Direction	(feet)	(feet)	Height Above Ground, Z (ft)	K _h	q _h (psf)	Cp	q _i (psf)	External Pressure q _h *G*Cp(+) (psf)	Internal Pressure q _{i*} G*C _p (-) (psf)	Net Pressure +(GC _{pi}) (psf)	Net Pressure (GC _{pi}) (psf)
Roof		0	34	68.0	0.85	22.38	-1.04	22.38	-19.78	4.03	-23.81	-15.76
	C _p (+)	34	60	68.0	0.85	22.38	-0.70	22.38	-13.32	4.03	-17.34	-9.29
		0.0	34.0	68.0	0.85	22.38	-0.18	22.38	-3.42	4.03	-7.45	0.60
	C _p (-) *	34.0	60.0	68.0	0.85	22.38	-0.18	22.38	-3.42	4.03	-7.45	0.60

<u>* Notes:</u> 1. Minimum Cp values may govern for Load Combinations including Live or Snow Load cases; these are not plotted!
 2. Minimum Loading case of 16 psf on Walls and 8 psf on Roofs, per Section 27.1.5 and Figure C27.4-1 must be checked!

Project	Oct 2016 SE Exam
Job No.	-
By	AL
Date	06/05/17
Sheet	of

MAIN WIND FORCE RESISTING SYSTEMS - WALLS AND ROOF

WIND DESIGN - CHAPT 27 - 2

ASCE 7-10 WIND PROVISIONS - CHAPTER 27 - DIRECTIONAL PROCEDURE PART 2: ENCLOSED SIMPLE DIAPHRAGM BUILDINGS < 160' PROBLEM SE EXAM REVIEW 1 : SP1 (ALAN WILLIAMS 1990 A1)

<u>Requirements</u>: - Building is an Enclosed Simple Diaphragm building as defined on Sec - Building does not have complex response characteristics (vortex chec - Building is not sited at a location where channeling effects or buffeting of upwind obstructions need to be considered.

1. Building Parameters

Site Data

Risk Category =	II	(ASCE 7-10 Table 1.5-1 Risk Category of Building)
EXP =	С	(Exposure Category per ASCE 7-10 26.7)
V =	110	mph (Figure 26.5-1A Basic Wind Speeds for Risk Category II Buildings)

Building Dimensions

Vertical:			Horizontal:		
H1 = H2 =	125.00 30.00	feet feet	a = b = c =	100.00 50.00 100.00	feet feet feet
H3 =	125.00	feet			
H4 =	30.00	feet			
B =	200.00	feet (Transv	erse building	dimensio	ר)
L =	250.00	feet (Longitu	udinal building	g dimensio	on)
Hp =	2.00	feet (Height	of Parapets)		

Note: Roof form may be flat, gable, mansard or hip

Notes: -	If b = 0, (If b = c = Otherwi	Gable/Hip Roof = > Mansard Roof 0, Monoslope Roof ice Mansard Roof
Poof Anglo :	Otherwi	
θ = =	16.70 16.70	degrees (Windward Side) degrees (Leeward Side)
Mean Roof H	leight (A	SCE 7-05 Section 6.2):
$H_{mr} = A$	VERAGE	E (H _e ,H _{max}), for θ >10 degrees, otherwise H _e
Whe	re H _{max} =	155.00 ft (maximum elevation)
	H _{eave} =	125.00 ft (Max Eave Height)
Г	H _{mr} =	140.00 ft (Mean Roof Height)
<u>2. Determin</u> H =	ation of 140.00	Building Class feet (Mean Roof Height)
L =	250.00	feet (Longitudinal building dimension)
B =	200.00	feet (Transverse building dimension)
=	0.80	L
	Class 1	Class 2
	Check	Check
H : <mark>N</mark>	G, > 60	' H : OK
В:	ОК	B: OK
Г		=> Class 2 Building

Project	Oct 2016 SE Exam
Job No.	-
Ву	AL
Date	06/05/17
Sheet	of

Class 2 Building

MAIN WIND FORCE RESISTING SYSTEMS - WALLS AND ROOF PROBLEM SE EXAM REVIEW 1 : SP1 (ALAN WILLIAMS 1990 A1)

WIND DESIGN - CHAPT 27 - 2 ASCE 7-10 WIND PROVISIONS - CHAPTER 27 - DIRECTIONAL PROCEDURE PART 2: ENCLOSED SIMPLE DIAPHRAGM BUILDINGS < 160'

Requirements : - Building is an Enclosed Simple Diaphragm building as defined on Se - Building does not have complex response characteristics (vortex che - Building is not sited at a location where channeling effects or buffeting 4. Determination of Wind Pressures - Roof

Building Dimensions :

=

H =

- L = 250.00 feet (Longitudinal building dimension) 200.00 B = feet (Transverse building dimension)
 - 0.80 L 140.00 feet (Mean Roof Height)

Roof Height used for Roof Wind Pressures are Note: determined at next Roof Level h provided in Table 27.6-2.

feet (Roof Height Level) $H_R = h =$ 140.00

Site Data

Risk Category =	Ш	(ASCE 7-10 Table 1.5-1 Risk Catego
EXP =	С	(Exposure Category per ASCE 7-10 2
V =	110	mph (Figure 26.5-1A Basic Wind S Risk Category II f

Note: Roof Wind Velocities used for Roof Wind Pressures are determined at next Roof Level h provided in Table 27.6-2.

 $V_R =$ 110 mph

Roof Angle :

θ =	16.70	degrees (Windward Side)
=	16.70	degrees (Leeward Side)
n/12 =	4	Roof Slope (n in 12 inches)

Resulting Table 27.6-2 Roof Wind Pressure Values

		-200			
		-300			
					_
K	00		6	Flat Ro $(\theta \le 10)$	of deg)
	/	A.Sh	-		

Transverse Wind Loading -

Wind Pressures

300

Type : Mansard Roof

							110				Anchor
	Roof S	Slope			Zone					Point	
H (feet)	n/12	Degrees	Load Case	ID	1	2	3	4	5		2
140	4	18.43	1	1400401	-30.6	-24.7	-37.9	-33.8	-27.7		
140	4	18.43	2	1400402	10.6	-10.8	0.0	0.0	0.0	1	

Where $P_1 =$

Need to apply Exposure Adjustment Factor....still.....

 $P_0 =$ -24.70 psf -37.90 Р psf

-30.60 psf

- $P_{4} =$ -33.80 psf
- P₅ = -27.70 psf

Project	SE Exam 2017	North Bay Seismic Design
Job No.	-	Structural Analysis and Design
Ву	AL	PO Box 55, Inverness CA 94937
Date	06/04/17	Tel/Fax (415) 663-8161
Sheet	of	www.NorthBaySeismicDesign.com

MAIN WIND FORCE RESISTING SYSTEMS - WALLS AND ROOF ASCE 7-10 WIND PROVISIONS - CHAPTER 28 - ENVELOPE PROCEDURE PART 1: ENCLOSED, PARTIALLY ENCLOSED, LOW RISE BUILDINGS PROBLEM SE EXAM REVIEW 1 : SP1 (ALAN WILLIAMS 1990 A1)

WIND DESIGN - CHAPT 28 - 1

Transverse Wind Loading w/o Torsion

Longitudinal Wind Loading w/o Torsion

1. Building parameters

	Where $K_7 =$	0.85	(Velocity Pressure Exposure Coeff per Table 28.3-1 - MWFRS, Exp C, Hmr=18)
	K _{zt} =	1.00	(Topographic Factor per Section 26.8.2)
	K _d =	0.85	(Wind Directionality factor per Table 26.6-1 - MWFRS, Components and Cladding)
	V =	110	mph
Γ	q _z =	22.38	psf (Wind Velocity Pressure)

3. Net Lateral Design Pressure for Enclosed and Partially Enclosed, Low Rise Buildings (ASCE 7-10 28.4.1)

$p = q_z * [GC_{pf} - G]$	GC _{pi}]	(EQ 28.4-1)		
Where $q_z =$	22.38	psf (Wind Velocity Pressure at mean roof height)		
$GC_{pf} =$	See Below	(External pressure coeff from Fig 28.4-1 - Low-rise Walls and Roofs)		
GC _{pi} = 0.18		(Internal pressure coeff from Fig 26.11-1 - MWFRS)		
		Note: Value is +/- 0.55 for partially enclosed Buildings,		
		+/- 0.18 for Enclosed Buildings;		

Project	SE Exam 2017	North Bay Seismic Design
Job No.	-	Structural Analysis and Design
Ву	AL	PO Box 55, Inverness CA 94937
Date	06/04/17	Tel/Fax (415) 663-8161
Sheet	of	www.NorthBaySeismicDesign.com

1.00

0.80 0.60

0.40 0.20

0.00

-0.40 External -0.60

-0.80

-1.00

-1.20

20

Case A Torsion

Transverse Direction

Transverse wind Loading w/ Lorsion

Coefficient, GCpf

Pressure -0.20

MAIN WIND FORCE RESISTING SYSTEMS - WALLS AND ROOF

WIND DESIGN - CHAPT 28 - 1

60

80

External Pressure Coefficient VS. Roof Slope

Roof Slope (degrees)

ASCE 7-10 WIND PROVISIONS - CHAPTER 28 - ENVELOPE PROCEDURE PART 1: ENCLOSED, PARTIALLY ENCLOSED, LOW RISE BUILDINGS PROBLEM SE EXAM REVIEW 1 : SP1 (ALAN WILLIAMS 1990 A1)

4. Lateral Loading Design Values - Transverse Loading (Load Case A)

Wind Loading - Cross Section

a) External Pressure Coefficients for Low-Rise Walls and Roofs

Roof Angle =	13.24	degrees (Windward Side)
=	13.24	degrees (Leeward Side)
L =	34.0	feet (building Longitudinal Dimension)
W =	25.0	feet (building Tranverse Dimension)
H _{mr} =	18.0	feet (Mean Roof Height)

T = Ν (Consideration of Torsion per ASCE 7-10 Figure 28.4-1, Note 5)

	ASCE 7-10 FIGURE 28.4-1									
	Building Surface									
Roof Angle	1	2	3	4	1E	2E	3E	4E		
0 - 5	0.40	-0.69	-0.37	-0.29	0.61	-1.07	-0.53	-0.43		
20	0.53	-0.69	-0.48	-0.43	0.80	-1.07	-0.69	-0.64		
30 - 45	0.56	0.21	-0.43	-0.37	0.69	0.27	-0.53	-0.48		
90	0.56	0.56	-0.37	-0.37	0.69	0.69	-0.48	-0.48		
Interpolated GC _{pf}	0.47	-0.69	-0.43	-0.37	0.71	-1.07	-0.62	-0.55		
GC _{pi} (+/-)	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18		
P + (psf)	6.52	-19.47	-13.66	-12.24	11.96	-27.98	-17.86	-16.23		
P -	14.58	-11.41	-5.60	-4.18	20.02	-19.92	-9.80	-8.18		

Convention: Plus values signify pressure acting towards surface, negative pressures away from surface.

b) Pressure Values for Low-rise Walls and Roofs

Extent of Loading:

a = MAX{MIN(10% Least Dimension, 40% Eave Height), 4% Least Dimension or 3.0'}

herefore a =	3.00	feet (See note 9 in Figure 28.4-1)	
2a =	6.00	feet	

Le = MIN(0.5*L,2.5*Hmr) (for region 2 or 2E for negative wind pressure; See note 8 in Figure 28.4-1)

4% Least Dimension, or 3 ft = 3.00 feet

Where 10% Least Dimension =

40% Eave Height = 0.40*Hmr =

18.00 feet (Mean Roof Height)

2.50 feet

7.20

feet

	Windward Wall			Windward Roof			Leeward Roof			Leeward Wall		
	1E	1	1T	2E	2	2T	3E	3	3T	4E	4	4T
Positive Load	11.96	6.52	0.00	-27.98	-19.47	0.00	-17.86	-13.66	0.00	-16.23	-12.24	0.00
Negative Load	20.02	14.58	0.00	-19.92	-11.41	0.00	-9.80	-5.60	0.00	-8.18	-4.18	0.00
Extent of												
Loading (2a,	6.00	28.00	0.00	6.00	28.00	0.00	6.00	28.00	0.00	6.00	28.00	0.00
feet)												

Note: Minimum Loading case of 16 psf on Walls and 8 psf on Roofs, per Section 28.4.4 and Figure C27.4-1 must be checked!

Page 2 of 3 Page 78 of 79

Le = 17.00 feet

Where L = 34.0 feet H_{mr} =

Project	2017 SE Exam	North Bay Seismic Design
Job No.	-	Structural Analysis and Design
Ву	AL	PO Box 55, Inverness CA 94937
Date	06/05/17	Tel/Fax (415) 663-8161
Sheet	of	www.NorthBaySeismicDesign.com

Contraction of the second

2

Case B

(H)

TIT

(R)

Case A

MAIN WIND FORCE RESISTING SYSTEMS - WALLS AND ROOF

ASCE 7-10 WIND PROVISIONS - CHAPTER 28 - ENVELOPE PROCEDURE PART 2: ENCLOSED SIMPLE DIAPHRAGM LOW-RISE BUILDINGS PROBLEM SE EXAM REVIEW 1 : SP1 (ALAN WILLIAMS 1990 A1) WIND DESIGN - CHAPT 28 - 2

Requirements : - Building has Simple Diaphragms per Section 26.2 - building must be regular shaped low-rise building as defined in Section 26.2 - Building does not have complex response

- characteristics (vortex chedding, etc);
- Building is not sited at a location where
- channeling effects or buffeting in the wake of upwind obstructions need to be considered.

1. Building Parameters

Risk Category:	II	(ASCE 7-10 Table 1.5-1)
Site Data		

ta			
	EXP =	В	(Exposure Category per ASCE 26.7.3)
	V =	115	mph (Basic Wind Speed, ASCE 7-10 Fig 26.5-1A)

Building Dimensions

Vertical:			Horizontal:			
H1 =	16.00	feet	m =	17.00	feet	Roof Angle θ = 13.24 degrees (Windward Side)
H2 =	4.00	feet	n =	17.00	feet	 = 13.24 degrees (Leeward Side)
H3 =	16.00	feet				
H4 =	4.00	feet				Mean Roof Height (ASCE 7-10 Section 26.2):
W =	25.00	feet (Tra	nsverse building	dimensic	n)	H_{mr} = AVERAGE (H_e , H_{max}), for θ >10 degrees, otherwise H_e
L =	34.00	feet (Lor	ngitudinal building	g dimensi	on)	
						Where H _{max} = 20.00 ft (maximum elevation)
						H _{eave} = 16.00 ft (Max Eave Height)
						H _{mr} = 18.00 ft (Mean Roof Height)
d Velocity I	Pressure (AS	CE 7-10 2	8.6.3)			
n) K D		(50,00,04	`		

2. Wind

$p_{s} = \lambda K_{zt} P_{s30}$	(EQ 28.6-			
Where $\lambda =$	1.00	(Adiustment		

nt Factor for Building Height and Exposure, per Fig 6-2, Exp B, H=18) $K_{zt} =$ (Topographic Factor per Figure 6-4 - No info provided on topography) 1.00

*p_{s30} psf (Wind Velocity Pressure) p_s = 1.00

3. Wind Pressure Values from ASCE 7-05 Figure 28.6-1, at Basic Wind Speed

a) Wind Pressures $p_{s30} \text{ on } \mathsf{MWFRS}$

13.24 For $\theta =$ degrees (Windward Side)

Simplified Design Wind Pressure, Ps30 (psf) (Exposure B at h = 30 ft., Kzt =1.0)												
Decis Wind	Deef Anale			Zones								
Basic Wind	(dograad)	Load Case		Horizontal	Pressures	6	Vertical Pressures				Overhangs	
Speed (mpn)	(degrees)		Α	В	С	D	E	F	G	Н	E _{OH}	G _{OH}
115	0 to 5°	1	21.0	-10.9	13.9	-6.5	-25.2	-14.3	-17.5	-11.1	-35.3	-27.6
	10	1	23.7	-9.8	15.7	-5.7	-25.2	-15.2	-17.5	-11.8	-35.3	-27.6
	15	1	26.3	-8.7	17.5	-5.0	-25.2	-16.5	-17.5	-12.6	-35.3	-27.6
	20	1	29.0	-7.7	19.4	-4.2	-25.2	-17.5	-17.5	-13.3	-35.3	-27.6
	25	1	26.3	4.2	19.1	4.3	-11.7	-15.9	-8.5	-12.6	-21.8	-18.5
		2	-	-	-	-	-4.4	-8.7	-1.2	-5.5	-	-
	30 to 45°	1	23.6	16.1	18.8	12.9	2.0	-14.3	0.6	-12.3	-8.3	-9.5
		2	23.6	16.1	18.8	12.9	9.9	-7.1	7.9	-5.0	-8.3	-9.5
		1	25.39	-9.09	16.87	-5.25	-25 20	-16 04	-17 50	-12.32	-35.30	-27 60
	13.24	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00