AISC Special Moment Resisting Frame						
Analysis and Design						
Table of Contents						
Retrofit Plans	Page 2					
SAP2000 Analysis Models						
- Fixed Base SMRF 1 at Gridline I	Page 3					
AISC 360-10 SMRF Design						
SMRF 1 at Gridline I - Fixed Base						
- Drift & Stability Checks (Pinned, Fixed)	Page 20					
- RBS Beam Design	Page 27					
- Column Design	Page 34					
- Beam-Column Connection Design	Page 42					
Anchorage to Concrete - Fixed Base						
- Base Plate Design	Page 49					
- Anchor Bolt Design	Page 53					
- Base Plate Design - Shear	Page 57					
Foundation Design						
- SMRF Footing	Page 63					
- Additional Reinforcement - Fixed Base	Page 73					

Lateral Force Resisting System (LFRS) Elements :

(N) Shear Wall

- ---- AISC Welded Fixed Base Frame

SAP2000 ANALYSIS MODEL : SINGLE BAY SINGLE STORY SMRF FRAME 1 - GRIDLINE I - FIXED COLUMN

SMRF Centerline Dimensions:

Height = 11.83' Length = 14.50'

SMRF Members:

Columns = W8x67 Beams = W10x30

orbett Avenue, San Francisco 785 (

Seismic Retrofit Calculations

orbett Avenue, San Francisco 785 C

venue, San Francisco acuations

Avenue, San Francisco Dalculations

ett Avenue, San Francisco 78

ett Avenue, San Francisco 78

ett Avenue, San Francisco 78'

hett Avenue, San Francisco 785

ett Avenue, San Francisco Project No. 201813.20 8/21/18 168/<u>502/5201</u>8 78' Page 18 of 77 Seismic Retrofit Calculations 1 \bigcirc 0.07 -0.02 \gg

hett Avenue, San Francisco 785

AISC SMRF DESIGN -DRIFT AND STABILITY CHECK

SPECIAL N 2010 AISC 785 CORB	IOMENT FF SEISMIC D ETT AVENU	RAME DES ESIGN MA JE, SAN FF	IGN - STOF NUAL PRO ANCISCO	RY DRIFT A VISIONS - 3 - SEISMIC	ND STABIL SMRF 1 AT RETROFIT	ITY CHEC GRIDLINE	K I - PINNED	BASE CO	NDITION						
Loading	Direction :	N-S													
I	Ne :	3	(Total Num	ber of Stori	es)										
1 Enocial	Moment Er	ama Data	(,										
1. Special	MOMENT FI	ame Data													
LRF	S is compris	sed solely o	f MF's per A	SCE 7-10	12.12.1.1 ?:	N	(Y/N)								
				New	Structure ? :	N	(Y/N)	(Non-strue	ctural comp	onents des	gned to acco	ommodate E	EQ drift?)		
Building an	d floor data						Results fro	om Elastic A	nalysis :						
L =	57.00	feet (Buildi	ng Length)				$\Delta_{xe} =$	0.859	inches (D	eformation	for Level Abo	ove at Cente	er of Mass, fro	om elastic ana	alysis)
W =	25.00	feet (Buildi	ng Width)				$\Delta_{xe-1} =$	0.859	inches (" fo	or Level Belo	w)	
H _a =	10.00	feet (Heigh	nt of floor ab	ove)			V _x =	8	Kips	(Story Sh	ear)				
п _b =	12.00	ieel (Heigi		iow)											
Seismic De	eformation a	t Floor bein	g evaluated	<u>:</u>											
Note:	Reduced-B	Beam-Section	on connectio	ons are use	d at frame b	eam-to-col	umn connec	tions; per A	ISC 358-10	Section 5.	8 Step 1, " e % of beam f	effective ela	astic drifts m	nay be	
$\Lambda_{\rm vo BBS} =$	(1.0 + A _{RP}	s) Δxe	for 2c <	= b _f / 2	3	Where c =	= 1.00	inches	(from RB	S Beam De	sian)				
-xe KB3		Note [.]	2.0=	2 00	inches	b, =	= 5.81	inches	(from mo	ment Fram	e Beam seler	ction below)			
			bf / 2 =	2.91	inches	-1	0.01	monoo	(b Boam bolo				
				OK			0(1								
						A _{RBS} =	= % Amplitio	cation in Ela	astic Drift di	IE TO RES					
						=	= 4 c / b _f x	10		Where c :	= 1.00	inches	(from RBS I	Beam Design)
										b _f	= 5.81	inches	(from mom	ent Frame Be	am selection below)
=	(1 + 0.069)	x 0.859					A _{RBS} =	= 6.88	% Amplifi	cation					
					_	$\Delta_{\rm xe}$ =	= 0.859	inches (D	eformation	at Level x a	t Center of M	lass, from e	lastic analysis	s)	
		$\Delta_{\text{xe RBS}} =$	0.918	inches	(Deformatio	on at Level	I Above at C	enter of Ma	ss - RBS)						
Moment Fra	ame Beams														
N =	1	(Number o	f Identical F	rames)											
Section:	W10x30			1											
n :	1			(number o	f beams/fran	ne)			Seismic F	arameters:					
A	8.84			in ²	_				R	= 8	Modificatio	n Respons	e Coefficient	(ASCE 7-10]	Table 12.2-1)
a t	0.30			in in	-					= 5.50 = 1.3	Redundan	cv Factor (/	ASCE 7-10 S	ce 7-10 Table ection 12.3.4)	9 12.2-1)
b _f	5.81			in	-				P					,	
t _f	0.51			in]			Occupan	cy Categor	y: I	(ASCE 7-1	10 Table 1-5	5-1: <u>Residenti</u>	ial Multi-unit D	welling)
r _y	1.37			in					I	= 1.0	Importance	e Factor, Ta	ble 11.5-2		
K Kı	0.81			in in	-				SDC	= E	Seismic D	esian Cated	orv (ASCE 7	-10 Section 1	1.4)
Т	8.88			in	1				S _{DS}	= 1.09	g's (Site D	Design Coef	ficient - Short	t Period)	
Z _x	37			in ³	J										
Gravity Loa	ds - Unfacto	ored													
	Floor	Roof]	-											
D	30.0	20.0	psf	4	F _y =	50	ksi								
 W =	15		oad)	1											
www =	15	Por (Wall I	_000)												

ancy Category

SPECIAL MOMENT FRAME DESIGN - STORY DRIFT AND STABILITY CHECK 2010 AISC SEISMIC DESIGN MANUAL PROVISIONS - SMRF 1 AT GRIDLINE I - PINNED BASE CONDITION 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

Loading Direction : N-S Floor Level : 1

N_S:

3 (Total Number of Stories)

2. Check Story Drift

a) Allowable Story Drift (ASCE 7-10 Table 12.12-1) LRFS is comprised solely of MF's per ASCE 7-10 12.12.1.1 ?: Ν $\Delta_a = h_{sx} (\Delta_a/h_{sx}) / \rho$ (SDC D-F for LFRS = 100% MF) (All other SDC's) $= h_{sx} (\Delta_a/h_{sx})$ Where $h_{sx} = H_{b} =$ 12.00 feet (Story height below level x) SDC = Е Seismic Design Category (ASCE 7-10 Section 11.4) 1.3 Redundancy Factor (ASCE 7-10 Section 12.3.4) ρ= $\Delta_a/h_{sx} =$ 0.020 for Floors total : 3 Occupancy Category =

$\Delta_a =$ 0.24 feet 2.88 inches

TABLE 12.12-1 ALLOWABLE STORY DRIFT, A, a,b Or

1 or II		IV	1
0.025h _{sx} ^c	0.020h _{3.8}	0.015h _{xx}	
0.010h _{xx}	0.010hss	0.010h _{s.s}	Ī
$0.007h_{sx}$	0.007hss	0.007h _{s.c}	I
0.020h _{ss}	0.015hxx	0.010h ₃₃	Ī
	0.025h _{5x} ^c 0.010h _{xx} 0.007h _{xx} 0.020h _{5x}	$\begin{array}{c c} 1 \text{ or } \Pi & \Pi \\ 0.025 h_{SX}^{-c} & 0.020 h_{3X} \\ \hline \\ 0.010 h_{xx} & 0.010 h_{sx} \\ 0.007 h_{xx} & 0.007 h_{sx} \\ 0.020 h_{SS} & 0.015 h_{3X} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

As our outer structures
 0.020*h*_{xx}
 0.015*h*_{xx}
 0.010*h*_{xx}
 0.010*h*

b) Resulting Drift at Floor Level x (ASCE 7-10 12.8.6)

 $\delta_{\rm X} = \frac{{\rm C_d} \ \delta_{\rm xe}}{-}$ $\Delta_{\rm X} = \frac{C_{\rm d} \, \Delta_{\rm xe}}{1}$ (12.8-15) =>

5.50 Deflection Amplification Factor (ASCE Table 12.2-1)

0.918 inches (Drift at Level Above at Center of Mass from elastic analysis)

Importance Factor, Table 11.5-2 1.0

 $\Delta_{\rm v} =$ 5.05 inches $NG > \Lambda a$

NG, Drift is NOT acceptable!

1 =

Where $C_d =$

 $\delta_{ve} => \Delta_{ve RBS} =$

<u>(Y/N)</u>

Structure

3. Check Frame or Stability at Floor Level

a) Portion of Gravity loads at Columns beneath floor level

i) Roof and Floor Areas

P_v = 338 kips

785 Corbett Avenue, San Francisco AISC SMRF Calculations Seismic Retrofit Calculations

SPECIAL MOMENT FRAME DESIGN - STORY DRIFT AND STABILITY CHECK 2010 AISC SEISMIC DESIGN MANUAL PROVISIONS - SMRF 1 AT GRIDLINE I - PINNED BASE CONDITION 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT Loading Direction : N-S Floor Level : 1 N_S: 3 (Total Number of Stories) b) Check of P - Delta Effects (ASCE 7-10 Section 12.8.7) $\theta =$ Stability Coefficient per EQ 12.8-16 = $(P_x \Delta_{xe-1} I_e) / (V_x H_{sx} C_d)$ ≤ 0.10 Where P_x = 338 kips $\Delta_{xe\text{-}l} = \text{ Seismic Design Story Drift of Level x-1 - RBS}$ $= C_d (1.0 + A_{RBS}) \Delta x_{e-1} / I_e (12.8-15)$ for $C_d =$ 5.50 Deflection Amplification Factor (ASCE 7-10 Ta 6.88 % Amplification $A_{RBS} =$ = 5.50 x (1.069) x 0.859 / 1.0 inches (. for Level Below $\Delta_{xe-1} =$ 0.859 Importance Factor, Table 11.5-2 ا_د = 1.0 $\Delta_{xe-1} =$ 5.05 inches 1.0 Importance Factor, Table 11.5-2 $I_e =$ 8 $V_x =$ kips (Story Shear) 11.00 H = feet 132.00 inches = $C_d =$ 5.50 Deflection Amplification Factor (ASCE 7-10 Table 12.2-1) $\theta =$ 0.287 c) Maximum Value for Stability Coefficient $\theta_{MAX} = 0.5 / (\beta C_d) \leq 0.25$ (12.8-17) Where β = Shear DCR for Level x = 1.0 (Conservative assumption per 12.8.7) Deflection Amplification Factor (ASCE 7-10 Table 12.2-1) $C_d =$ 5.50 0.091 $\theta_{MAX} =$ $\theta =$ Note: 0.287 radians OK NG Floor Level is NOT Stable!

SPECIAL N 2010 AISC 785 CORB	IOMENT FF SEISMIC D ETT AVENL	RAME DES ESIGN MA JE, SAN FF	IGN - STOR NUAL PRO RANCISCO -	Y DRIFT A VISIONS - S - SEISMIC I	ND STABIL SMRF 1 AT RETROFIT	ITY CHEC GRIDLINE	CK E I - FIXED B	ASE CON	DITION						
Loading	Direction :	N-S													
F	N.	1	(Total Num	ber of Stori	(ac)										
	INS .	5	(Total Nulli	ber of otom	63)										
1. Special	Moment Fr	ame Data													
LRF	S is compris	sed solely o	f MF's per A	SCE 7-10	12.12.1.1 ?:	N	(Y/N)								
				New S	Structure ? :	N	(Y/N)	(Non-stru	ctural comp	onents de	signed to acco	ommodate E	EQ drift?)		
Building an	d floor data						Results fro	om Elastic /	Analysis :						
L =	57.00	feet (Buildi	ng Length)				$\Delta_{\rm xe}$ =	0.196	inches (D	eformatior	for Level Abo	ove at Cente	er of Mass, fro	m elastic analy	sis)
W =	25.00	feet (Buildi	ng Width)				$\Delta_{\text{xe-1}} =$	0.196	inches (for Level Belo	w)	
H _a =	10.00	feet (Heigh	nt of floor ab	ove)			V _x =	8	Kips	(Story S	hear)				
n _b =	12.00	leet (Heigr	It of hoor bei	ow)											
Seismic De	eformation a	t Floor beir	ig evaluated	<u>:</u>											
Note:	Reduced-B calculated	Beam-Section by multype	on connection Iying elastic	ons are used c drifts bas	d at frame b ed on gros	eam-to-co s beam se	lumn connec ections by 1.	tions; per A .1 for flang	AISC 358-1 Je reductio	0 Section 5 ns up to 5	.8 Step 1, " e 0% of beam fl	ffective ela lange width	astic drifts ma n".	ay be	
$\Delta_{xe RBS} =$	(1.0 + A _{RB}	_{ss}) ∆xe	for 2c < :	= b _f / 2		Where c =	= 1.00	inches	(from RB	S Beam De	esign)				
		Note	2 c =	2.00	inches	b _f	= 5.81	inches	(from mo	oment Fran	ne Beam selec	ction below)			
			bf / 2 =	2.91	inches							,			
				ок	Γ.		04 1								
						A _{RBS}	= % Amplific	cation in El	astic Driπ d	ue to RBS					
							$= 4 c/b_f x$	10		Where c	= 1.00	inches	(from RBS B	eam Design)	
										b	_f = 5.81	inches	(from mome	ent Frame Bear	n selection below)
=	(1 + 0.069)	x 0.196					A _{RBS} =	6.88	% Amplif	ication					
						Δ_{xe}	= 0.196	inches (D	eformation	at Level x	at Center of M	ass, from e	lastic analysis))	
		$\Delta_{\rm xe RBS} =$	0.210	inches	(Deformati	on at Leve	el Above at C	enter of Ma	ass - RBS)						
Moment Fra	ame Beams														
N =	1	(Number o	f Identical Fi	rames)											
Section:	W10x30		T	1											
n :	1			(number of	f beams/frar	ne)			Seismic I	Parameters	<u>.</u>				
А	8.84			in²]				R	= 8	Modificatio	n Respons	e Coefficient (/	ASCE 7-10 Tab	ble 12.2-1)
d	10.50			in					Cd	= 5.50	Deflection	Amplificatio	on Factor (ASC	CE 7-10 Table 1	2.2-1)
t _w	0.30			in					ρ	= 1.3	Redundan	cy Factor (A	ASCE 7-10 Se	ction 12.3.4)	
b _f	5.81			in											
t _f	0.51			in	-			Occupan	icy Categor	y: I	(ASCE 7-1	0 Table 1-5	-1: <u>Residentia</u>	al Multi-unit Dwe	elling)
r _y	1.37			in					I	= 1.0	Importance	e Factor, Ta	able 11.5-2		
K,	0.69			in					SDC	= F	Seismic De	esion Cated	10rv (ASCE 7-	10 Section 11 4	L)
T	8.88		1	in	1				Sne	= 1.09	g's (Site D	esign Coef	ficient - Short I	Period)	,
Z _x	37	1	1	in ³	1				55		0 (1.17	0		,	
Gravity Loa	ds - Unfacto	ored			_										
	Floor	Roof	1												
D	30.0	20.0	psf]	F _y =	50	ksi								
L	40.0	20.0	psf]											
w _W =	15	psf (Wall	Load)												

ancy Category

SPECIAL MOMENT FRAME DESIGN - STORY DRIFT AND STABILITY CHECK 2010 AISC SEISMIC DESIGN MANUAL PROVISIONS - SMRF 1 AT GRIDLINE I - FIXED BASE CONDITION 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

Loading Direction : N-S Floor Level : 1

N_S:

3 (Total Number of Stories)

2. Check Story Drift

a) Allowable Story Drift (ASCE 7-10 Table 12.12-1) LRFS is comprised solely of MF's per ASCE 7-10 12.12.1.1 ?: Ν $\Delta_a = h_{sx} (\Delta_a/h_{sx}) / \rho$ (SDC D-F for LFRS = 100% MF) (All other SDC's) $= h_{sx} (\Delta_a/h_{sx})$ Where $h_{sx} = H_{b} =$ 12.00 feet (Story height below level x) SDC = Е Seismic Design Category (ASCE 7-10 Section 11.4) 1.3 Redundancy Factor (ASCE 7-10 Section 12.3.4) ρ= $\Delta_a/h_{sx} =$ 0.020 for Floors total : 3

$$\begin{array}{rcl} & & & \\ & & \\ & = & \\ & & \\$$

TABLE 12.12-1 ALLOWABLE STORY DRIFT, A, a,b 04

	1 or II	111	IV	l
Structures, other than masonry shear wall structures, 4 stories or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the story drifts.	0.025h _{sx} ^c	0.020h _{3.K}	0.015h _{xx}	
Masonry cantilever shear wall structures 4	0.010h _{1.x}	0.010hss	0.010h _{ss}	Ī
Other masonry shear wall structures	0.007h _{sx}	0.007hss	0.007h _{1.x}	Ī
All other structures	0.020h	0.015h.	0.010h	Ī

(A) All other structures 0.020n_{1xx} 0.015n_{2xx} 0.017n_{2xx} 0.01

b) Resulting Drift at Floor Level x (ASCE 7-10 12.8.6)

 $\delta_{\rm X} = \frac{{\rm C_d} \ \delta_{\rm xe}}{-}$ $C_d \Delta_{xe}$ (12.8-15) => $\Delta_{\rm X} =$

5.50 Deflection Amplification Factor (ASCE Table 12.2-1)

- 0.210 inches (Drift at Level Above at Center of Mass from elastic analysis)
- Importance Factor, Table 11.5-2 1.0

 $\Delta_{\rm v} =$ 1.15 inches OK < Aa

Resulting Drift is acceptable

1 =

Where $C_d =$

 $\delta_{ve} => \Delta_{ve RBS} =$

<u>(Y/N)</u>

Structure

3. Check Frame or Stability at Floor Level

a) Portion of Gravity loads at Columns beneath floor level

i) Roof and Floor Areas

P, =

338

kips

785 Corbett Avenue, San Francisco AISC SMRF Calculations Seismic Retrofit Calculations

SPECIAL MOMENT FRAME DESIGN - STORY DRIFT AND STABILITY CHECK 2010 AISC SEISMIC DESIGN MANUAL PROVISIONS - SMRF 1 AT GRIDLINE I - FIXED BASE CONDITION 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT Loading Direction : N-S Floor Level : 1 N_S: 3 (Total Number of Stories) b) Check of P - Delta Effects (ASCE 7-10 Section 12.8.7) $\theta =$ Stability Coefficient per EQ 12.8-16 = $(P_x \Delta_{xe-1} I_e) / (V_x H_{sx} C_d)$ ≤ 0.10 Where P_x = 338 kips $\Delta_{xe\text{-}l} = \text{ Seismic Design Story Drift of Level x-1 - RBS}$ $= C_d (1.0 + A_{RBS}) \Delta x_{e-1} / I_e (12.8-15)$ for $C_d =$ 5.50 Deflection Amplification Factor (ASCE 7-10 Ta 6.88 % Amplification $A_{RBS} =$ = 5.50 x (1.069) x 0.196 / 1.0 $\Delta_{\rm xe-1} = -0.196$ inches (. for Level Below 1.0 Importance Factor, Table 11.5-2 ا_د = $\Delta_{xe-1} =$ 1.15 inches 1.0 Importance Factor, Table 11.5-2 $I_e =$ $V_x =$ 8 kips (Story Shear) 11.00 H = feet 132.00 inches = $C_d =$ 5.50 Deflection Amplification Factor (ASCE 7-10 Table 12.2-1) $\theta =$ 0.066 c) Maximum Value for Stability Coefficient $\theta_{MAX} = 0.5 / (\beta C_d) \leq 0.25$ (12.8-17) Where $\beta=$ Shear DCR for Level x = 1.0 (Conservative assumption per 12.8.7) Deflection Amplification Factor (ASCE 7-10 Table 12.2-1) $C_d =$ 5.50 0.091 $\theta_{MAX} =$ $\theta =$ Note: 0.066 radians OK OK Level 1 is considered stable

AISC SMRF DESIGN -RBS BEAM DESIGN

2 of 6

Quick Check:

Use AISC 360-10 Table 4-1 for L_p and L_r

values.

SPECIAL MOMENT FRAME DESIGN - SMF REDUCED BEAM SECTION BEAM DESIGN 2010 AISC SEISMIC DESIGN MANUAL PROVISIONS - SMRF 1 AT GRIDLINE I - FIXED BASE CONDITION 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

5. Flexural Strength (AISC 360-10 Section F2) - Left Girder

a) Unbraced length limits for Flexural members - Limit state of yielding - Gross Section

b) Unbraced length limits for Flexural members - Limit state of Lateral Torsional Buckling - Gross Section

Note: rts provided on AISC Table 1-1, Lr provided on AISC Table 3-6 for WF shapes, but not provided in Spreadsheet database and therefore calculated here.

inches

Ksi

c) Flexural Capacity - Yield Limit - Gross Section

d) Flexural Capacity reduced by Lateral-Torsional Buckling Effects

Unbraced length

4 of 6

5 of 6

Loading Direction : N-S Floor Level : 2			Beam ID Gridline	BM-1 10			
f) Required Brace Stiffness (AISC 36	60-10 Appendix 6)						
$\beta_{tr} = \frac{1}{\phi} \left(\frac{10 \text{ M}_{r} \text{ C}_{d}}{L_{b} \text{ h}_{o}} \right)$		Where $\phi =$ $M_r =$ $C_d =$	0.75 2,013 1.0	kip-in			
		$L_b =$	68.3	inches (ma	x girder unbra	aced leng	gth)
		$h_o = d - t_f =$	9.99	inches (Dis	tance betwee	en flange	centroids)
$\beta_{br} =$ 39.3	kip/in						
g) Actual Brace Stiffness							
$K = \frac{A_g E}{L_a} \cos^2\theta$		Where $\theta = \tan^{-1} (d/L_a)$			and d = L ₂ =	10.50 49	inches inches
		θ =	12.06	degrees	-a		
		$A_g = 2.86$ E = 29,000 $L_a = 49$	n^2 ksi nches				
K = 1650.7	kip/in <mark>ΟΚ, > β</mark>						
	Use L4x4>	(3/8 kickers to brace be	eam botto	m flange at	a Maximum	spacing	of 5.75 feet on-cente

AISC SMRF DESIGN -COLUMN DESIGN

1. Member Selection and Moment Frame Column Geometry

Note: This worksheet is meant for regular Moment Frame geometries consisting of the following:

- all frames identical in loading direction considered; - same girder for each floor level, max of two floor levels framing into column;
- same span length each bay, variable number of interior bays,AISC shapes defined for typical exterior and interior columns.
 Story vertical loads previously calculated for "1. SMF Story Drift, Stability" worksheet.

Building Dimensions:

L =	57.00	feet
W =	25.00	feet

R_L = 0.50 (Live load reduction for columns, ASCE Section 4.8)

Interior Columns

W₈

0.57

0.94

3.72

2.12

1.33 in

0.94

5.75

70 in^a

272 in٩

5.05 inʻ

in

in

in

Тор

W8x67

19 70

9.00

0.57

8.28

0.94

3.72

2.12

1 33

0.94

5.75

70

272

5.05

Snow

Note: R₁ is used for determination of total vertical load supported by story.

Moment Frame Data:

S =	14.00	feet (Span, typical)
N _{frames} =	1	(# identical frames)
N _{int cols} =	2	(# interior columns)

Floor	Height	AISC	lu (in 6.4)
Level	(feet)	Shape	IX (III/4)
3	10.00	-	-
2	10.00		
1	13.00	W10x30	170

Exterior Columns

Bottom

W8x67

19.70

9.00

0.57

8.28

0.94

3.72

2.12

1 33

0.94

5.75

70

272

5.05

Live

1.0

1.0

1.0

0.5

Тор

W8x67

1970

9.00

0.57

8.28

0.94

3.72

2.12

1 33

0.94

5.75

70

272

5.05

Dead

8.0

2.0

15.0

7.0

Column Demands - Unfactored

Α

d

tw

b_f

tr

r_x

ry

ĸ

K₁

Т

Zx

I_x J

P

V

 $M_{x, \, \underline{top}}$

M_{x, bot}

Width

(feet)

22.00

Area

(ft²)

1,254

Tributary Area for Lateral Force Resisting System:

Length

(feet)

57.00

Location

Gridline

10

Bottom* 19 70 AISC 358-10 Section 5.3.2 - Column Limitations : d_{MAX} = 36.00 inches (Max Column Depth) 9.00 in in Material Properties (Seismic Design Manual as referenced) 8.28 in in

E = 29,000 ksi

	Columns	Beams	
Turne	A992, Gr.	A572, Gr.	
Type	50	50	
F _y (ksi)	50	50	(Fy min specified, AISC 360-10 Table 2-4, pg 2-48)
F _u (ksi)	65	65	(F _u stress specified, AISC 360-10 Table 2-4, pg 2-48)
Ry	1.10	1.10	(Ratio of Expected F_y to min F_y specified; AISC 341-10 Table A3.1)
Rt	1.10	1.10	(Ratio of Expected Fu to min Fu specified; AISC 341-10 Table A3.1)

Results from Elastic Analysis :

EQ									
3.0	Kips	$\Delta_{xe} =$	0.196	inches (De	formatio	n for	Level Abo	ove at Center of Mass, fr	om elastic analysis)
5.0	Kips	$\Delta_{\text{xe-1}} =$	0.196	inches (for L	_evel Belo	w ")
20.0	Kip-ft								
30.0	Kip-ft	V _x =	8	Kips	(Story S	Shear)		
					Seismi	: Para	ameters:		
the col	umn supports in the plane	of bendin	g.		C.	2 ₀ =	3.00	Overstrength Factor (AS	SCE Table 12.2-1)
		-							

Assumptions:

3. 4.

1. There is no tranverse loading between the 2.

	0		
Non-translation forces are due to Dead and Live loads, while Translation Forces due to Seismic Loads.	ρ=	1.30	Redundancy Factor (ASCE Section 12.3.4)
Column tributary areas are constant across floor levels.			
Distributed load is applied uniformly over entire area for purposes of evaluating axial loads.	SDC =	E	Seismic Design Category (ASCE 7 Section 11.4)
	$S_{DS} =$	1.091	g's (Site Design Coefficient - Short Period)

Note : d_c = 9.00 inches

W8x67 Column OK

1.3

1 091

1.3

1.091

1.3

1.091

1.3 1.091 Redundancy Factor

Redundancy Factor

Redundancy Factor

Redundancy Factor

g's (Site Design Coefficient - Short Period)

SPECIAL MOMENT FRAME DESIGN - SMF COLUMN DESIGN

Loading Direction :	N-S	Column ID:	C-1				
Floor Level :	1	Gridline:	10				
N _S :	3	(Total Number of Stories)					
2. Factored Loads on	Column	or Story					
a) Shear Demands:							
$V_u = (1.2 + 0.2 S_c$	_s) V _D + ρ	V_{EQ} + 0.5 V_{L} + 0.2 V_{S}		Where $V_D =$	2.00	Kips	a
				V _L =	1.00	Kips	
				V _s =	0.00	Kips	
				V _E =	5.00	Kips	
V _u =	9.8	kips					
b) Non-translation Force	s (Gravity	<u>/Loads):</u>					
$P_{nt} = (1.2 + 0.2 S_{D})$	s) P _D + ρ	P _{EQ} + 0.5 P _L + 0.2 P _S		Where $P_D =$	8.00	Kips	a
				P _L =	1.00	Kips	
				P _s =	0.00	Kips	
		249		P _E =	0.00	Kips	
P _{nt} =	11.8	kips					
$M_{nt, top} = (1.2 + 0.2 S_{D})$	s) M _D + ρ	M _{EQ} + 0.5 M _L + 0.2 M _S		Where M _D =	15.00	Kip-ft	a
				$M_L =$	1.00	Kip-ft	
				M _s =	0.00	Kip-ft	
				M _E =	0.00	Kip-ft	
M _{nt, top} =	21.8	kips					
$M_{nt, bot} = (1.2 + 0.2 S_{D})$	s) M _D + ρ	M _{EQ} + 0.5 M _L + 0.2 M _S		Where M _D =	7.00	Kip-ft	a
				M _L =	0.50	Kip-ft	
				M _s =	0.00	Kip-ft	
					0.00	10 0	

 $P_{lt} = (1.2 + 0.2 \text{ } S_{DS}) \text{ } P_{D} + \rho \text{ } P_{EQ} + 0.5 \text{ } P_{L} + 0.2 \text{ } P_{S}$ Where $P_D = 0.00$ Kips and $\rho = 1.3$ Redundancy Factor P_L = 0.00 g's (Site Design Coefficient - Short Period) Kips S_{DS} = 1.091 P_s = 0.00 Kips P_E = 3.00 Kips P_{lt} = 3.9 kips Where $M_D =$ $M_{It, \ top} = (1.2 + 0.2 \ S_{DS}) \ M_{D} + \rho \ M_{EQ} + 0.5 \ M_{L} + 0.2 \ M_{S}$ 0.00 Kip-ft and $\rho =$ 1.3 Redundancy Factor $M_L =$ 0.00 Kip-ft S_{DS} = 1.091 g's (Site Design Coefficient - Short Period) M_s = Kip-ft 0.00 M_E = 20.00 Kip-ft 125 M_{nt, top} = 26.0 kips $M_{It, bot} = (1.2 + 0.2 \text{ S}_{DS}) M_D + \rho M_{EQ} + 0.5 M_L + 0.2 M_S$ Where $M_D =$ 0.00 Kip-ft and $\rho =$ 1.3 Redundancy Factor $M_L =$ g's (Site Design Coefficient - Short Period) 0.00 Kip-ft S_{DS} = 1.091 M_s = 0.00 Kip-ft M_E = 30.00 Kip-ft -298

d) Total vertical load resisted by Story (AISC 360-10 Section C2.1(2), Appendix 8) and SMRF Columns:

Note: Total vertical and SMF component are calculated here and used later in Section 6 (Second Order Effects).

M_{nt, bot} = 39.0 kips

P_{Story} = (1.2 + 0.2 S _{DS}) P_{D} + ρ P_{EQ} + 0.5 R_{L} P_{L} + 0.2 P_{S}	Note: G	ravity loa	ads determined in "SMF S	Story Dri	ft, Stability", copied here.						
Where $P_D = D_r + N_{floors} (D_f + W_w)$ (Story Column Dead load	d - roof + flo	ors)	and D _r =	29	kips (roof)						
			N _{floors} =	3							
P _D = 238 Kips			D _f =	43	kips (floor)						
			$W_w =$	27	kips (wall)						
$S_{DS} = 1.091$ g's (Site Design Coefficient - Short Period)											
P _L = L _r + N _{floors} L _f (Story Column Live load - roof + fl	floors)		and L _r =	29	kips (roof)						
			N _{floors} =	3							
P _L = 200 Kips			L _f =	57	kips (floor)						
$R_L = 0.50$ (Live load reduction for columns, ASC	CE Section	4.8)									
P _s = 0.00 Kips											
P _E = 3.00 Kips	and ρ =	1.3	Redundancy Factor								
P _{Story} = 391 kips											

P_{Story} = 391 kips

i) Total Vertical Load Supported by Story
Loading Direction :	N-S	Column ID:	C-1							
Floor Level :	1	Gridline:	10							
N _S :	3	(Total Number of Stories	;)							
ii) Total Vertical Load	d Supported	d by SMF Columns								
$P_{mf} = P_{Story} A_{LFR}$	_S / A _{Floor}	When	re P _{Story} =	391	Kips					
			$A_{LFRS} =$	1,254	ft ²	(Tributary A	rea for La	iteral Force	e Resisting Sys	stem
		A _{floo}	r = A _{roof} =	LW		Where L =	57.00	feet		
						W =	25.00	feet		

 $A_{floor} = A_{roof} = 1,425$ ft² = 391 (0.88) P_{mf} = 344 Kips

3. Column Slenderness Check

a) Flange Width-thickness Ratio - Actual (AISC 341-10 Table D1.1).

Note: Seismic Provisions Section E3.5a states that Beam and Column Members shall meet requirements of Section D1.1 for Highly ductile elements.

 $\lambda_f = b_f / (2 t_f)$ Where b_f = 8.28 Quick Check: inches t_f = 0.94 inches Use AISC 341-10 Table 1-3 for SMF $\lambda_f =$ 4.43 Sections that satisfy Seismic b/t requirements. b) Flange Width-thickness Ratio - Highly Ductile Member $\lambda_{hdf} = 0.30 (E/F_v)^{0.5}$ (AISC 341-10 Table D1.1) Where E = 29,000 Ksi F_y = 50 Ksi $\lambda_{hdf} =$ 7.22 OK /////// Limiting b/t Ratios OK for Flanges 1/ // // // c) Width-thickness Ratio for Web - Actual (AISC 341-10 Table D1.1). $\lambda_w = h / t_w$ Where h = d - 2 K = 6.34 inches I_w 0.57 inches t_w = $\lambda_w =$ 11.12 7777777 11/1/1 d) Limiting Width-thickness Ratio for Web in Flexural/Axial Compression - Highly Ductile Members i) Axial Load Ratio $C_a = P_u / (\phi_b P_y) = P_u / (\phi_b F_y A_g)$ (AISC 341-10 Table D1.1) Where $P_u = P_{nt} + B_2 P_{lt}$ and Pnt = 11.8 kips (Calculated later) $B_2 =$ 1.07 P_{lt} = 3.9 kips P_u = 16.0 kips 0.90 (AISC 350-10 Section E1) Φ_b = $F_v =$ 50.00 ksi C_a = 0.0181 19.70 in^2 $A_{\alpha} =$ ii) Low Axial Loading $\lambda_{hdw} = ~2.45$ (E / F_y $)^{0.50}~$ (1 - 0.93 C_a) ~~ for $C_a \leq ~0.125$ Where E = 29,000 Ksi $F_v = 50.0$ Ksi C_a = 0.018 $\lambda_{hdw} =$ 58.0 (Controls!) iii) Axial Loading - All other cases $\lambda_{\rm hdw} = ~0.77~(~{\sf E}~/~{\sf F_y}~)^{0.50}~(~2.93~-~{\sf C_a}~)~\geq~1.49~(~{\sf E}~/~{\sf F_y}~)^{0.50}$ for $C_a \ge 0.125$ Where E = 29,000 Ksi $F_{y} = 50.0$ Ksi C_a = 0.018 $\lambda_{hdw} =$ 54.0 $\lambda_{hdw} =$ 58.0 ок Limiting b/t Ratios OK for Web ection satisfies Seismic b/t Ratio for Highly Ductile Column

4. Flexural Strength (AISC 360-10 Section F2)

a) Unbraced length limits for Flexural members - Limit state of yielding

Quick Check: Use AISC 360-10 **Table 4-1** for L_p and L_r values.

b) Unbraced length limits for Flexural members - Limit state of Lateral Torsional Buckling

Note: rts provided on AISC Table 1-1, Lr provided on AISC Table 3-6 for WF shapes, calculated here conservatively per Specification Section F2.

5. Compressive Strength (AISC 360-10 Section E3)

a) Determination of Column Available Nominal Compressive Strength (Capacity)

 Note:
 The Direct Analysis Method of Design (AISC 360-10 Section C1.1) consists of the following: ...

 Required Strength (Demands) in accordance with Section C2;

 Available Strength (Capacity) in accordance with Section C3, as performed here;

Column Available Nominal Compressive Strength (Capacity)

N_S: 3 (Total Number of Stories)

6. Second Order Effects (AISC 360-10 Section C2.1(2) and Appendix 8):

a) Approximate Second Order Analysis (AISC 360-10 Appendix 8)

 $M_r = B_1 M_{nt} + B_2 M_{lt}$ (A.8-1) $P_r = P_{nt} + B_2 P_{lt}$ (A.8-2) Where $M_{nt} = M_u$ = Required Flexural strength w/o lateral translation = 22 kip-ft M_{It} = Required Flexural strength due to lateral translation of frame = 39.0 kip-ft B_1 = Amplification factor for P- $\!\Delta$ due to gravity loads $B_1 = \frac{C_m}{1 - \frac{\alpha P_r}{\alpha}} \ge 1.0$ Where $C_m = 0.6 - 0.4 (M_1/M_2)$ (A.8-4) and M1 = 21.77 kip-ft $M_2 = M_1 = 21.77$ kip-ft P_{e1} C_m = 0.20 (AISC 360-10 Section C2.1(2), Appendix 8) α = 1.00 (LRFD Approach) $P_r = P_{nt} + B_2 P_{lt}$ kips (axial load w/o translation) and Pnt = 12 B₂ = 1.07 (Calculated below) P_{lt} = Pu = kips (axial load with translation) 3.9 P_r = 16.0 kips $P_{e1} = \frac{\Pi^2 E I}{c}$ for E = 29,000 (A.8-5) ksi $(K_{1}L)^{2}$ = 0.201 Ix_c = 272 in^4 K1 = 1.00 (AISC 360-10 Section C3) B₁ = 1.00 $L = L_b =$ 156 inches P_{e1} = 3,199 kips B_2 = Amplification factor for P- Δ due to Lateral Movement Note: Effective Length calcs no longer performed in AISC 360-10. 1 Where $\alpha = 1.00$ (LRFD Approach) $B_2 = \frac{1}{1 - \left[\frac{\alpha P_{\text{Story}}}{P_{\text{Story}}}\right]}$ _ ≥1.0 P_{Story} = 391 kips Pestory P_{e Story} = Elastic Critical Buckling Strength for Story for P_{Story} = $= R_M H L / \Delta_H \quad (A-8-7)$ and $R_M = 1 - 0.15 P_{mf} / P_{Story}$ 391 kips P_{mf} = 344 Kips R_M = 0.87 $H = V_x =$ 8 Kips (Story Shear) $L = H_f = 13.00$ feet 156 inches = inches (Deformation for Level Above at $\Delta_{\rm H} = \Delta_{\rm xe} = -0.196$ Center of Mass, from elastic analysis) P_{e Story} = 5,649 kips B₂ = 1.07 $M_r =$ 64 kip-ft

P_r = 16.0 kips

Pr/dc Pn = 0.027 Therefore EQ H1-1b Applies!

 $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) = \text{NA}$

7. Combined Flexure and Axial loads

(a) For $\frac{P_r}{P_r} \ge 0.2$		
	$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$	(H1-1a)
(b) For $\frac{P_r}{P_c} < 0.2$	$P_r \left(M_{rr} - M_{rv} \right)$	
	$\frac{1}{2P_c} + \left(\frac{1}{M_{cx}} + \frac{1}{M_{cy}}\right) \le 1.0$	(H1-1b)

 $\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) = 0.271 \quad \text{OK, < 1.0}$

Note: Mry and Mry not considered.

Note: Per comments on AISC 341-05 Example 4.9, decreasing column size to optimize drift control and least weight solution might not result in the least cost solution, as column might require use of thick doubler plates and large heavily welded column stiffeners.

8. Shear Capacity

W8x67 OK thus far!

Use AISC 341-10 Table 4-2 to get \$\$

Quick Check:

value for WF shape value.

AISC SMRF DESIGN -BEAM-COLUMN CONNECTION DESIGN

Girder Gravity Loads - Unfactored

	Dead	Live	Snow	1
Wleft	0.98	0.04		Kip/ft
Wright	0.98	0.04		Kip/ft
				-

P_u = 12 kips

Seismic Parameters:

 $\Omega_0 = 3.0$ Overstrength Factor (ASCE Table 12.2-1)

ρ = 1.30 Redundancy Factor (ASCE Section 12.3.4)

N_s: 3 (Total Number of Stories)

7.2 Required Stiffener Plates - Left Beam

Notes:

- 1. Use of full height stiffener plates means that most failure modes (J10.1 thru J10.7) do not have to be checked, except for Web Local Yielding (J10.2) and Web Compression Buckling (J10.5).
- 2. Web Compression Buckling applies only to compressive forces on both flanges, so does not apply.

a) Required Stiffener Plate Area (AISC 360-10 Section J10.2)

BASE PLATE DESIGN -DESIGN FOR LARGE MOMENTS

Project No. 201813.20 8/22/2018 Page 50 of 77

COLUMN BASE PLATE WITH <u>LARGE</u> MOMENT - SMRF 1 AT GRIDLINE I LRFD APPROACH - AISC 360-10 AND STEEL DESIGN GUIDE 1 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

1. Parameters

Column: W8x67	= >	d = 9.00	inches (Wide Flange	e - Depth)				
		b _f = 8.28	inches (Wide Flange	e - Width)	Г			
		t _f = 0.94	inches (Wide Flange	e - Thicknes	is)	Large Moment	Base Plat	e Design
		Z _x = 70.1	in ³ (Wide Flange - I	Plastic Sect	ion)			
		A = 19.70	in ² (Wide Flange - A	vrea)		-20 -15 -10 -5 0 5	5 10 15	20 25 30 35
		$F_y = \frac{50}{50}$	Ksi					
Bolts: D _B =	1.00	inches (Bolt Diame	ter)					
	h _{ef} :	= 24.00 inches (E	Bolt Embedment w/ W	asher)		-5		
N _{BL} =	4	(Number of Bolts -	Longitudinal - Max 7)			0	Jol	
N _{BT} =	4	(" -	Transverse - ")		-10		
Grade	e of Bolt :	= <mark>55</mark> Ksi (Gra	ade 36, 55, or 105)					
d _e =	2.00	inches (distance fro	om bolt C_L to edge of	Plate)		-15 0	0 0 0	
AISC 360-	10 Table	14-2 Requirements	<u>.</u>					
Μ	lax Hole	Diameter = 1.81	inches			-20		
	Min Wa	sher Size = 3.00	inches					
Min V	Vasher T	hickness = 0.38	inches			20		
Loading :								
S _{DS} =	1.09	g's (Site Design C	oefficient - Short Perio	od)				
Pu =	15	Kins (+isCo	moression - is Tensi	(nn)				
. ₀ М. –	115%		Capacity W	bere M –	1 221	kin in		
wij =	113780	RDS Dealin Flexulai		noro m _{pr} –	1,021	KIP-III		
l	M _U :	= <mark>1,519</mark> Kip-in						
Base Plate Dimension	ons:			Material Pr	operties		-	
Trial Size :				f _y =	50.00	Ksi	Table 2.1. E	ase Plate Materials
N =	16.00	inches (Base Plate	- Length)	f' _c =	3.25	Ksi	Thickness (t _p)	Plate Availability
	O	< C					$l_p \leq 4$ In.	ASTM A36 M ASTM A572 Gr 42 or 50
B =	18.00	inches (Base Plate	- Width)	Ψ ₃ =	1.25	(ACI 318-08 Appendix D5.2.6 ;		ASTM A588 Gr 42 or 50
	0	< Comparison of the second sec				Cast in place Anchors, 1.25 for uncracked concrete	4 in. < $t_{\rho} \le 6$ in.	ASTM A36 🛤 ASTM A572 Gr 42
A ₂ =	288	in ² (Area of Concre	te Support)			1.0 Otherwise)		ASTM A588 Gr 42
Foundation Dimension	ons:						$t_p > 6$ In.	ASTM A36
$L_F =$	4.00	feet (foundation Le	ength)					specification
W _F =	2.00	feet (foundation W	lidth)					
H _F =	3.00	feet (foundation De	epth)					
		ок						
Design Parameters :								
ϕ_b =	0.65	(AISC 360-10 Sect	ion J8; Bearing)					
ф _{сь} =	0.70	(ACI 318-08 Appen	dix D.4.4 ; Concrete I	Breakout St	rength -	Pullout or Pryout)		
$\phi_{\sf EQ}$ =	0.75	(ACI 318-08 Appen Seismic Regions)	dix D.3.3 ; Anchor ca	pacities red	uced by	0.75 in		

COLUMN BASE PLATE WITH <u>LARGE</u> MOMENT - SMRF 1 AT GRIDLINE I LRFD APPROACH - AISC 360-10 AND STEEL DESIGN GUIDE 1 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

2. Loading Eccentricities

COLUMN BASE PLATE WITH <u>LARGE</u> MOMENT - SMRF 1 AT GRIDLINE I LRFD APPROACH - AISC 360-10 AND STEEL DESIGN GUIDE 1 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

BASE PLATE DESIGN -ANCHOR ROD DESIGN FOR TENSION

785 Corbett Avenue, San Francisco AISC SMRF Calculations Seismic Retrofif(면해군ulations

DESIGN OF BASE PLATE ANCHORAGE IN CONCRETE - SMRF 3 AT GRIDLINE 10 ACI 318-11 APPENDIX D REQUIREMENTS - ANCHORING IN CONCRETE 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

1. Parameters									
Column:	W8x67	= >	d = 9.00	inches (Wide Flange - Dept	th)				
			b _f = 8.28	inches (Wide Flange - Widt	th)				
			t _f = 0.94	inches (Wide Flange - Thic	kness)		Base Plate A	nchorage	
Bolts:	D _B =	1.00	inches (Bolt Diame	eter)					
		h _{ef} =	24.00 inches (Bolt Embedment w/ Washer)				-15 -10 -5 0 5 10	0 15 20	25 30 35
	N _{BL} = N _{BT} =	4	(Number of Bolts - (" -	Longitudinal - Max 7) - Transverse - ")					····
	Grade	of Bolt =	55 KSI (Gr	ade 36, 55, or 105)			-5-5-0		
	d _e =	2.00	inches (distance fr	om bolt C _L to edge of Plate)					
	AISC 360-	10 Table	14-2 Requirements	<u>s:</u>			-10 0	0	
	N	lax Hole [Diameter = 1.81	inches			-15		
		Min Was	her Size = 3.00	inches					
	Min V	Vasher II	hickness = 0.38	inches			-20 -		
Loading :	T _U =	120	Kips (from required	d Base Plate Thickness Calcs	;)		-25		
	S _{DS} =	1.09	g's (Site Design C	Coefficient - Short Period)					
	P _U =	15.00	Kips (+ is Co	ompression, - is Tension)					
	$M_U =$	1,519	Kip-in						
			-						
Base Plate Dimensi	ions:		-	,	Material Pr	operties	:		
Base Plate Dimens	ions: Frial Size :		-	I	<u>Material Pr</u> f _v =	operties	<u>.</u> Ksi	Table 2.1. E	ase Plate Materials
Base Plate Dimensi	ions: Trial Size : N =	16.00	inches (Base Plate	!	Material Pr f _y = f' _c =	<u>operties</u> 50.00 3.25	<u>K</u> si	Table 2.1. E Thickness (t_p) $t_p \le 4$ in.	ase Plate Materials Plate Availability ASTM A36 ^[6]
<u>Base Plate Dimensi 1</u>	i <u>ons:</u> Trial Size : N =	16.00 OK	inches (Base Plate	! 9 - Length)	Material Pr f _y = f' _c =	<u>operties</u> 50.00 3.25	Ksi Ksi	Table 2.1. EThickness (t_p) $t_p \le 4$ in.	ase Plate Materials Plate Availability ASTM A36 ™ ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50
Base Plate Dimens	ions: Frial Size : N = B =	16.00 OK 18.00	inches (Base Plate	! e - Length) e - Width)	$\frac{\text{Material Pr}}{f_y} = f'_c = \Psi_3 = 0$	operties 50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ;	Table 2.1. EThickness (t_p) $t_p \leq 4$ in.4 in. $< t_p \leq 6$ in.	ase Plate Materials Plate Availability ASTM A36 ¹⁴ ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A36 ¹⁴
<u>Base Plate Dimens</u>	ions: Trial Size : N = B =	16.00 OK 18.00 OK	inches (Base Plate	g - Length) 9 - Width)	$\frac{\text{Material Pr}}{f_y} = f_c = \Psi_3 = 0$	50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete,	Table 2.1. EThickness (t_p) $l_p \leq 4$ in.4 in. $< t_p \leq 6$ in.	ase Plate Materials Plate Availability ASTM A56 M ASTM A582 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 or 50
Base Plate Dimens	<u>ions:</u> T <u>rial Size :</u> N = B = A ₂ =	16.00 OK 18.00 OK 288	inches (Base Plate inches (Base Plate in ² (Area of Concre	g - Length) 9 - Width) ete Support)	$\frac{\text{Material Pr}}{\text{f}_{y}} = \\ \text{f}_{c}^{*} = \\ \Psi_{3} = $	00000000000000000000000000000000000000	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $t_p \leq 4$ in. 4 in. $< t_p \leq 6$ in. $t_p > 6$ in. 10 Preferend metarial	Aster Plate Materials Plate Availability ASTM A36 ^{IM} ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A572 Gr 42 ASTM A578 Gr 42 ASTM A578 Gr 42 ASTM A578 Gr 42
Base Plate Dimensi	<u>ions:</u> T <u>rial Size :</u> N = B = A ₂ = <u>ons:</u>	16.00 OK 18.00 OK 288	inches (Base Plate inches (Base Plate in ² (Area of Concre	! 9 - Length) 9 - Width) ete Support)	$\frac{\text{Material Pr}}{f_y} = $ $f'_c = $ $\Psi_3 = $	operties 50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $t_p \leq 4$ in. 4 in. $< t_p \leq 6$ in. $t_p > 6$ in. M Preferred material material	Ast Plate Materials Plate Availability ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A586 ASTM A56 pecilication
Base Plate Dimensi	<u>ions:</u> <u>rial Size :</u> N = B = A ₂ = <u>ons:</u> L _F =	16.00 OK 18.00 OK 288 17.50	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L	! e - Length) e - Width) ete Support) ength)	$\begin{array}{c} \text{Material Pr}\\ f_y = \\ f_c = \\ \Psi_3 = \end{array}$	50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $t_p \leq 4$ in. 4 in. $< t_p \leq 6$ in. $t_p > 6$ in. \forall Proferred material e	ase Plate Materials Plate Availability ASTM A52 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 or 50 ASTM A572 Gr 42 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A588 Gr 42
Base Plate Dimensi	<u>ions:</u> <u>rial Size :</u> N = B = A ₂ = <u>A₂ =</u> <u>Cons:</u> L _F = W _F =	16.00 OK 18.00 OK 288 17.50 2.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V	! → - Length) → - Width) ete Support) ength) Vidth)	Material Pr f _y = f' _c = Ψ ₃ =	50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $l_p \leq 4$ in. 4 in. $< t_p \leq 6$ in. $t_p > 6$ in. $ $ Proferred material s	ASTM A586 M ASTM A572 Gr 42 or 50 ASTM A572 Gr 42 or 50 ASTM A572 Gr 42 or 50 ASTM A572 Gr 42 ASTM A572 Gr 42 ASTM A586 Gr 42 ASTM A586 Gr 42 ASTM A586 Gr 42
Base Plate Dimensi	<u>ions:</u> <u>rial Size :</u> N = B = A ₂ = A ₂ = <u>Ons:</u> L _F = W _F = H _c =	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V feet (foundation D	! e - Length) e - Width) ete Support) ength) Vidth) Veoth)	Material Pr fy = f'c = Ψ ₃ =	50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $t_p \le 4$ in. 4 in. $< t_p \le 6$ in. $t_p > 6$ in. \forall Proferred material ϕ	ASTM A58 Gr 42 or 50 ASTM A572 Gr 42 or 50 ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A56
Base Plate Dimensi	$\frac{\text{ions:}}{\text{Irial Size :}}$ $N =$ $B =$ $A_2 =$ $A_2 =$ $Ons:$ $L_F =$ $W_F =$ $H_F =$	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation M feet (foundation D OK	ی e - Length) e - Width) ete Support) 	Material Pr fy = f'c = Ψ ₃ =	operties 50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $t_p \leq 4$ in. 4 in. $< t_p \leq 6$ in. $t_p > 6$ in. M Preferred material of	ASTM A36 M ASTM A572 Gr 42 or 50 ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A586 Gr 42 ASTM A36
Base Plate Dimensi	ions: rial Size : N = B = A ₂ = Ons: L _F = H _F = H _F =	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V feet (foundation D OK	g - Length) 9 - Width) ete Support) eength) Vidth) Depth)	Material Pr fy = f'c = Ψ ₃ =	50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $t_p \leq 4$ in. 4 in. $< t_p \leq 6$ in. $t_p > 6$ in. \forall Preferred material to	ase Plate Materials Plate Availability ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A586 Gr 42 ASTM A588 Gr 42 ASTM A586 Gr 42 ASTM A36
Base Plate Dimensi	ions: Trial Size : N = B = $A_2 =$ Ons: $L_F =$ $H_F =$ $H_F =$	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V feet (foundation D OK	g - Length) 9 - Width) ete Support) ength) Vidth) Depth)	Material Pr fy = f'c = Ψ ₃ =	50.00 3.25 1.25	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $t_p \leq 4$ ln. 4 ln. < $t_p \leq 6$ ln. $t_p > 6$ ln. \bowtie Preferred material e	ase Plate Materials Plate Availability ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 ASTM A588 Gr 42 ASTM A36 pecification
Base Plate Dimensi	ions: rial Size : N = B = A ₂ = Ons: L _F = H _F =	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V feet (foundation D OK	g - Length) e - Width) ete Support) ength) Vidth) Vepth) Anchor in Concrete: Capacity	$\frac{\text{Material Pr}}{f_y} = \frac{f_c}{f_c} = \frac{1}{2}$ $\Psi_3 = \frac{1}{2}$	0.75	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise)	Table 2.1. E Thickness (t_p) $l_p \le 4$ in. 4 in. < $t_p \le 6$ in. $t_p > 6$ in. W Preformed material e	ase Plate Materials Plate Availability ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A586 Gr 42 ASTM A572 Gr 42 ASTM A572 Gr 42 ASTM A36 pecification
Base Plate Dimensi	ions: Trial Size : N = B = $A_2 =$ Ons: $L_F =$ $H_F =$ $H_F =$	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V feet (foundation D OK	g - Length) e - Width) ete Support) ength) Vidth) Depth) Anchor in Concrete: <u>Capacity</u>	$\frac{\text{Material Pr}}{f_y} = \frac{f_c}{f_c} = \frac{1}{2}$ $\Psi_3 = \frac{1}{2}$ $\frac{1}{2} \frac{1}{2} 1$	0.75 0.75	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise) (Steel Anchor - Seismic Region - ACI 3 (Steel Anchor - Tension, Ductile Steel	Table 2.1. E Thickness (t_p) $t_p \leq 4$ in. 4 In. < $t_p \leq 6$ in. $t_p > 6$ in. ¹⁰ Proferred material e Section D.3.3.3) Element - ACI D.4.	ase Plate Materials Plate Availability ASTM A36 M ASTM A572 Gr 42 or 50 ASTM A368 Gr 42 or 50 ASTM A36 M ASTM A36 M ASTM A36 M ASTM A372 Gr 42 ASTM A36 pecification
Base Plate Dimensi	ions: Trial Size : N = B = A ₂ = Ons: L _F = H _F = :	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V feet (foundation D OK	g - Length) e - Width) ete Support) ength) Vidth) Depth) Anchor in Concrete: <u>Capacity</u>	$\frac{\text{Material Pr}}{f_y} = \frac{f_c}{f_c} = \frac{1}{2}$ $\Psi_3 = \frac{1}{2}$ $\frac{\Psi_3}{\Phi_{cal}} = \frac{\Psi_{cal}}{\Phi_{cal}} = \frac{\Psi_{cal}}{\Phi_{cal}} = \frac{1}{2}$	0.75 0.75 0.75	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise) (Steel Anchor - Seismic Region - ACI S (Steel Anchor - Tension, Ductile Steel (Steel Anchor - Concrete Condition B -	Table 2.1. E Thickness (t_p) $t_p \leq 4$ in. 4 in. < $t_p \geq 6$ in. Image: the state of	Asse Plate Materials Plate Availability ASTM A36 M ASTM A572 Gr 42 or 50 ASTM A588 Gr 42 or 50 ASTM A36 M ASTM A588 Gr 42 or 50 ASTM A38 ASTM A38 pecification 4)
Base Plate Dimensi	ions: Trial Size : N = B = A ₂ = Ons: L _F = H _F = :	16.00 OK 18.00 OK 288 17.50 2.00 3.00	inches (Base Plate inches (Base Plate in ² (Area of Concre feet (foundation L feet (foundation V feet (foundation D OK	g - Length) g - Width) ete Support) ength) Vidth) Depth) Anchor in Concrete: <u>Capacity</u> <u>Material P</u>	$\frac{\text{Material Pr}}{f_y} = \frac{f_c}{f_c} = \frac{f_c}{q_{ac}} = \frac{\psi_a}{q_{ac}} =$	0.75 0.70 0.75 0.70 Note	Ksi Ksi (ACI 318-08 Appendix D5.2.6 ; Cast in place Anchors, 1.25 for uncracked concrete, 1.0 Otherwise) (Steel Anchor - Seismic Region - ACI S (Steel Anchor - Tension, Ductile Steel (Steel Anchor - Concrete Condition B - : Supplementary reinforcement not prov	Table 2.1. E Thickness (t_p) $t_p \leq 4$ ln. 4 ln. < $t_p \geq 6$ ln. $t_p > 6$ ln. IM Professed material e Section D.3.3.3) Element - ACI D.4. ACI D.4.4) vided for pullout an	ase Plate Materials Plate Availability ASTM A36 M ASTM A586 Gr 42 or 50 ASTM A586 Gr 42 or 50 ASTM A36 M ASTM A36 M ASTM A388 Gr 42 ASTM A38 peocification 4)

DESIGN OF BASE PLATE ANCHORAGE IN CONCRETE - SMRF 3 AT GRIDLINE 10 ACI 318-11 APPENDIX D REQUIREMENTS - ANCHORING IN CONCRETE 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT 2. Adequacy of Footing - Anchor Pull-out in New Footing **Base Plate Anchorage** T_U = 120 Kips on N = 4 (Number of Bolts - Transverse - Max 7) a) Bolt Design Strength - Tension (ACI 318-08 D3.3.3, D4.4, D5.1) -20 -15 -10 -5 0 5 10 15 20 25 30 35 $\varphi_{\text{EQ}} \ \varphi_{\text{sa,t}} \ N_{\text{sa}} = \ \varphi_{\text{EQ}} \ \varphi_{\text{sa,t}} \ n \ A_{\text{se,N}} \ f_{\text{uta}} \eqno(D-3)$ Where $\phi_{EQ} = 0.75$ (Steel Anchor - Seismic Region - ACI Section D.3.3.3) 0 0 $\phi_{sa,t} = 0.75$ (Steel Anchor - Tension, Ductile Steel Element - ACI Section D.4.4) 0 0 $A_{seN} = \pi t_{uD}^2$ for $t_{HD} =$ 1.00 inches (Diameter of 0 Holdown Anchor) $A_{se,N} = 0.79$ in² f_{uta} = Min (1.6 f_{ya}, 125) for $f_{ya} =$ 60.00 Table 34-1 - ASTM A307) f_{uta} = 96.00 Ksi $\phi_{EQ} \phi_{sa,t} N_{sa} = 42$ Kips (Bolt Design Strength - Tension) b) Concrete Breakout Strength - Tension (ACI 318-08 Section D5.2) Note: Condition B is assumed per Section D4.4, where Supplementary reinforcement in not present in failure prism. $\varphi_{\text{EQ}} \ \varphi_{\text{sa,cb}} \ N_{\text{cb}} = \ \varphi_{\text{EQ}} \ \varphi_{\text{sa,cb}} \ N_{\text{b}} \ A_{\text{NC}} / A_{\text{NCO}} \qquad \Psi_1 \ \Psi_2 \ \Psi_3 \ \Psi_4 \qquad (\text{D-4})$ Where $\phi_{EQ} = 0.75$ (Steel Anchor - Seismic Region - ACI Section D.3.3.3) $\phi_{sa,cb}$ = 0.70 (Steel Anchor - Concrete Breakout Category 2 - ACI D.4.4) N_b = Basic concrete Break-out Strength of a single anchor in Tension in Cracked Concrete (ACI D.5.2.2) $= K_C f'_c^{0.5} H_{ef}^{1.5} \lambda$ and K_C = 24 Cast-in Anchors (D5.2.2) f'_c = 3.25 Ksi 3,250 Psi H_{ef} = 24.00 inches (Embedment depth of Holdown Anchor) $\lambda = 1.00$ (1.0 for NWC, 0.75 for LWC) Note: NWC - Normal Weight Concrete Assumed N_b = 160.87 Kips A_{NC} = Projected Concrete Failure Area - Actual (ACI D5.2.1) = $(C_{a1x} + S_x + C_{a2x}) (C_{a1y} + S_y + C_{a2y})$ for $C_{a1x} = C_{a2x} = (L_F - N)/2 + d_e < 1.5 h_{ef}$ Where $L_F = 210.00$ inches (foundation Length) N = 16.00 inches (Base Plate - Length) d_e = 2.00 inches (distance from bolt C_L to edge of Plate) 1.5 hef = 36.00 inches C_{a1x} = 36.00 inches $S_{x} = N - 2 d_{e} < 3.0 h_{ef}$ Where N = 16.00 inches (Base Plate - Length) d_e = 2.00 inches (distance from bolt C_L to edge of Plate) 3.0 h_{ef} = 72.00 inches S_x = 12.00 inches C_{a1y} = C_{a2y} = $\$ (W_{F} - B)/2 $\$ + $\ d_{e} \$ < 1.5 $\ h_{ef}$ Where $W_F = 24.00$ feet (foundation Width) B = 18.00 inches (Base Plate - Width) $d_e = 2.00$ inches (distance from bolt C_L to edge of Plate) 1.5 h_{ef} = 36.00 inches C_{a1y} = 5.00 inches $S_{v} = B - 2 d_{o}$ < 3.0 ha Where B = 18.00 inches (Base Plate - Width) d_e = 2.00 inches (distance from bolt C_L to edge of Plate) 3.0 h_{ef} = 72.00 inches S., = 14.00 inches $A_{NC} = 2,016$ in² A_{NCO} = Projected Concrete Failure Area - Ideal (ACI D5.2.1) = 9 h_{ef}² (D-6) and Hef = 24.00 inches (Embedment depth of Holdown Anchor) $A_{NCO} = 5.184 \text{ in}^2$ $\Psi_{\rm l}=\Psi_{\rm ec,N}=~~{\rm Modification~for~Anchor~Groups~loaded~Eccentrically~in~Tension~(ACI~D.5.2.4)}$ $= 1/(1 + 2 e'_N / 3 H_{ef})$ and e'_N = 0 (All anchors in group loaded in Tension - No eccentricity) H_{ef} = 24.00 inches (Embedment depth of Holdown Anchor) $\Psi_1 = \Psi_{ec,N} =$ 1.0 Modification for Anchor Groups loaded Eccentrically in Tension (ACI D.5.2.4)

DESIGN OF BASE PLATE ANCHORAGE IN CONCRETE - SMRF 3 AT GRIDLINE 10 ACI 318-11 APPENDIX D REQUIREMENTS - ANCHORING IN CONCRETE
785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT
$\Psi_2 = \Psi_{\text{rd N}} = Modification for Edge Effects (ACI D.5.2.5)$
= 1.0 if $C_{a,min} >= 1.5 H_{ef}$ Where $C_{a1} = 5.00$ inches (Distance from Wall CL to Left Edge of Existing Footing Wall)
= 0.7 + 0.3 $C_{a,min}$ / (1.5 H_{el}) if $C_{a,min}$ < 1.5 H_{el} C _{a2} = 5.00 inches (Distance from Wall CL to Right Edge of Existing Footing Wall)
C _{a,min} = 5.00 inches
1.5 h _{ef} = 36.00 inches
$\Psi_1 = \Psi_{ed,N} = -0.74$ Modification for Edge Effects (ACI D.5.2.5)
$\Psi_3 = \Psi_{c,N} = Modification for Uncracked Concrete (ACI D.5.2.6)$
= 1.25 Note: Cracking is not expected at Service Load levels
$\Psi_2 = \Psi_{c,N} = -1.25$ Modification for Uncracked Concrete (ACI D.5.2.6)
$\Psi_4 = \Psi_{cp,N} =$ Modification for Post-Installed Anchors (ACI D.5.2.7)
= 1.0 tor Cast-in Anchors $\Psi_{-} = \Psi_{-} = 1.00$ Modification for Post-Installed Anchors (ACLD 5.2.7)
$\Phi_{EQ} \Phi_{sa,cb} N_{cb} = 30.45$ Kips (Concrete Break-out Strength - Tension)
c) <u>Pullout Strength of Anchor - Tension</u> (ACI 318-08 Section D5.3) Note: Condition B is assumed her Section D4.4, where Supplementary reinforcement in not present in failure prism
$\phi_{EC} \phi_{sa,po} N_p = \phi_{EC} \phi_{sa,po} N_p \Psi_4 (D-14)$
Where $\phi_{EQ} = 0.75$ (Steel Anchor - Seismic Region - ACI Section D.3.3.3)
$\phi_{sa,po} = \phi_{sa,cb} = 0.70$ (Steel Anchor - Concrete Breakout/Pullout - ACI D.4.4)
N = Pull-out Strength of a single anchor in Tension in Cracked Concrete (ACLD 5.3.4)
r_{p} = 8 A _m f' _c (D-15) and A _m = Bearing Area of Anchor Bolt. or Washer if provided
= L_{PL}^2 for L_{PL} = 3.0 inches (Min Washer Size - AISC 360-10 Table 14-2)
<u>Note:</u> D _B = 1.00 inches (Bolt Diameter)
A _{brg} = 9.00 in ² (Bearing Area of Anchor Bolt Washer)
ť _c = 3.25 Ksi = 3.250 Psi
N _p = 234.0 kips
$\Psi 4 = \Psi_{a, \mathbf{p}} =$ Modification for Uncracked Concrete (ACI D.5.3.6)
= 1.4 Note: Cracking is not expected at Service Load levels
$\Psi 4 = \Psi_{c,P} =$ 1.4 Modification for Uncracked Concrete (ACI D.5.3.6)
$\phi_{EQ} \phi_{sa,po} N_p = 172.0$ Kips (Concrete Pull-out Strength - Tension)
I) Concrete Side-face Blowout Strength of Anchor - Tension (ACI 318-08 Section D5.4)
$\phi_{EQ} \phi_{sa,sf} N_p = \phi_{EQ} \phi_{sa,po} N_p$ Where $\phi_{EQ} = 0.75$ (Steel Anchor - Seismic Region - ACI Section D.3.3.3)
$\phi_{sa,st} = \phi_{sa,cb} = 0.70$ (Steel Anchor - Concrete Breakout/Pullout/Side Blowout - ACI D.4.4)
$N_p = 160 C_{a1} A_{brg}^{0.5} \lambda f'_c^{0.5}$ Where $C_{a1} = 5.00$ inches (Distance from Wall CL to Left Edge of Existing Footing Wall)
$C_{a2} = 5.00$ inches (Distance from Wall CL to Right Edge of Existing Footing Wall)
$C_{a,min} = 5.00 \text{ inches}$
$\lambda = 1.00$ (1.0 for NWC, 0.75 for LWC)
Note: NWC - Normal Weight Concrete Assumed
$T_c = 3.25$ Ksi = 3,250 Psi
N _p = 136.8 Kips
$\phi_{EQ} \phi_{sa,sf} N_p = 71.8$ Kips (Concrete Side-face Blowout Strength - Tension)
e) Limiting Governing Strength per Anchor - Tension Only
$T_{UC} = Min \left(\phi_{EQ} \phi_{sa,t} N_{sa}, \phi_{EQ} \phi_{sa,cb} N_{cb}, \phi_{EQ} \phi_{sa,cb} N_{p}, \phi_{EQ} \phi_{sa,sf} N_{p}\right) $ $Wherer \phi_{EQ} \phi_{sa,t} N_{sa} = 42.4 $ $Kips (Bolt Design Strength)$
$\phi_{EQ} \phi_{sa,cb} N_{cb} = 30.4$ Kips (Concrete Break-out Strength)
$\phi_{EQ} \phi_{sa,po} N_p = 172.0$ Kips (Concrete Pull-out Strength)
$\phi_{EQ} \phi_{sa,sf} N_p = 71.8$ Kips (Concrete Side-face Blowout Strength)
) Limiting <u>Governing Strength of Anchor Group - Tension Only</u>
$T_{\rm UC} = 30.45 \text{ Kips}$
$T_{UC} = 122 \text{ Kips} \text{ Note: } T_{U} = 120 \text{ Kips} \text{ on } N = 4 \text{ (Number of Bolts - Transverse - Max 7)}$
OK Use 4 - 1.00" Diameter Bolts ea Side of Column Flange

BASE PLATE DESIGN -DESIGN FOR SHEAR COLUMN BASE PLATE DESIGN FOR SHEAR - SMRF 3 AT GRIDLINE 10 LRFD APPROACH - AISC 360-10 AND STEEL DESIGN GUIDE 1 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

30 35 40

Non-shrink Structural Grout

Concrete Foundation

Non-shrink Structural

Grout

1. Parameters												
Column: W8x6	<mark>67</mark> =	> d = b _f =	9.00 8.28 0.94	inches (Wide Flange - inches (Wide Flange -	- Depth) - Width) - Thickness)			Base	Plate	Desig	n - S	hear
Bolts: D	D _B = 1.0	9 inches (Bo	olt Diamet	er)	THICKIESS)		-25 -20 -1	5 -10 -{	5 0	5 10	15 20	25
N _E G	_{BL} = 4 _{BT} = 4 Grade of B	(Number o (" olt = <u>55</u>	Ksi (Gra	Longitudinal) Transverse) Ide 36, 55, or 105)					0. 	0 0	2	
c Loading :	d _e = 2.0	<mark>)0 </mark> inches (di	stance fro	m bolt C_L to edge of Pla	ate)				-10 -15 -15		> > 0	
Note: Shear re Length	esistenac of Base F	e is assumed to late.	be Para	lel to Column Axis, alor	ng						┿┛│┤	
S _E V	os = 1.0	9 g's (Site I Kips	Design Co	efficient - Short Period))				-25	—		
P	P _U = 1	5 Kips	(+ is Co	mpression, - is Tension	n)				-30	у		
Base Plate Dimen	i <u>sions:</u> N = 16.	00 inches (Ba	ase Plate	- Length)	<u>f_v = 36.00</u>	Ksi			40	╺╻║┎──		
	B = <u>18</u> .	OK 00 inches (Ba OK	ase Plate	- Width)	f' _c = 4.00	Ksi			-45			
Foundation Dimor	t _p = 1.6	3 inches (Ba	ase Plate	- Thickness)					-60			
L	_{-F} = 4.(00 feet (foun	dation Le	ngth)					-65			
W	/ _F = 2.0	00 feet (foun	dation W	dth)					-70			
F	H _F = 3.0	<mark>)0</mark> feet (foun	dation De	pth)			L		-75			
<u>Shear Lug Data:</u>		$h_{lug} =$ $t_{lug} =$ $W_{lug} =$	3.75 1.25 9.00	in (Height of Lug plate in (Thickness of Lug F in (Width of Lug Plate	e) Plate) e)				-85			
Grout Bed Data:		h _g =	2.00	in (Height of Grout Bed	d)				F	∎_ <u>`</u>	T.	
		h _{ce} = f' _{cg} =	2.00 6.00	in (Embedment Depth Ksi (Grout value)	- <u>above</u> Foundatio	on)		s	hear Lug-		Ľ	3 Concr
Design Parameter	r <u>s :</u>	φ _v = μ =	0.75	(AISC 360-10 Section (Steel on Grout)	J8)				s	Shear Lug	Detail	Found
		= φ _b =	0.70 0.90	(Steel on Concrete) (AISC 360-10 Section	J8)				/ •1			No St Gr
		φ _w =	0.75	(AISC 360-10 Section	Table J2.5 - Weld	s)			$\left< \frac{1}{2} \right>$		L,	

F_{ex} = 70 ksi (Weld Strength)

Concrete Column Embedment Detal

Figure 3.5.1. Transfer of base shears through bearing.

2. Shear Strength Components Base Plate Design - Shear A. Friction Component between Base Plate and Grout/Concrete Surface (ACI 318-08) $\phi V_f = \phi \mu P_U \leq 0.2 f'_c A_c$ Where $\phi =$ 0.75 5 10 15 20 25 30 35 40 -25 -20 -15 -10 -5 0 0.55 μ= (Steel on Grout) P_U = = MIN(6,346) 15 Kips (+ is Comp, - is Tension) $\phi V_f =$ 6 Kips Limit Values: $f_{c} = 6.00$ Ksi $A_c = N B$ for N = 16.00 inches B = 18.00 inches 288 $A_c =$ in² $0.2 f_{c} A_{c} =$ 346 Kips $\phi V_f =$ 6 Kips B. Bearing Component between Steel and Concrete Surfaces a) Bearing on Column or Side of Base Plate ♦ V_b = Bearing on Base Plate + Bearing on Column Flange $= 0.55 f'_{c} (A_{bp} + A_{cf})$ Where f'_ = 6.00 Ksi A_{bp} = Bearing on Base Plate = B MIN(t_p, h_{ce}) for B = 18.00 inches (Base Plate - Width) t. = 1.63 inches (Base Plate - Thickness) h_{ce} = 2.00 in (Embedment Depth - above Foundation) $A_{bp} = 29.25 \text{ in}^2$ (Bearing on Base Plate) A_{cf} = Bearing on Column Flange $= b_f h_f$ for b_f = 8.28 inches (Wide Flange - Width) $h_f = MIN(h_{ce} - t_p, 0)$ and $h_{ce} = 2.00$ in (Embedment Depth - above Base Plate) t_p = 1.63 inches (Base Plate - Thickness) = 3.30 (29.3 + 3.1) 0.38 inches (Flange embedment Length) h_f = = (97 + 10) 3.11 in² (Bearing on Column Flange) $A_{cf} =$ $\phi V_b =$ 107 Kips b) Bearing on Shear Lug i) Ultimate $\mbox{Bearing Strength}$ of Concrete in contact w/ Shear Lug : $\phi P_b = 0.80 f'_c A_{sl}$ Where $f'_c = 4.00$ Ksi A_{sl} = Bearing on Shear Lug = h'_e W_{lug} for $h'_e = h_{lug} - h_g$ and h_{lug} = 3.75 in (Height of Lug plate) 2.00 in (Height of Grout Bed) $h_{a} =$ h'_e = 1.75 in (Effective Height of Lug plate) 9.00 in (Width of Lug Plate) $W_{lug} =$ $A_{sl} = 15.75 \text{ in}^2$ (Bearing on Shear Lug) $\phi P_b = 50$ Kips

Project No. 201813.20 8/22/2018 Page 60 of 77

COLUMN BASE PLATE DESIGN FOR SHEAR - SMRF 3 AT GRIDLINE 10 LRFD APPROACH - AISC 360-10 AND STEEL DESIGN GUIDE 1 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

785 Corbett Avenue, San Francisco **AISC SMRF Calculations** Seismic Retrofit Calculations

COLUMN BASE PLATE DESIGN FOR SHEAR - SMRF 3 AT GRIDLINE 10 LRFD APPROACH - AISC 360-10 AND STEEL DESIGN GUIDE 1 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

 $\phi V_{conf} = 1.2 (N_y - P_a)$

Note :

N_y = Yield Strength of tension Anchors

 $\phi V_{conf} =$ 0 Kips COLUMN BASE PLATE DESIGN FOR SHEAR - SMRF 3 AT GRIDLINE 10 LRFD APPROACH - AISC 360-10 AND STEEL DESIGN GUIDE 1 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

3. Connection Shear Capacity - Summary

Connection Demands :

 $V_U=~5~$ Kips for $P_U=~15~$ Kips ~~ (+ is Compression, - is Tension)

Connection Capacity :

\$\psi_VC_{cnf}\$
 (Friction Component - Base Plate and Grout/Concrete Surface)
 (Bearing on Column or Side of Base Plate)
 (Bearing on Shear Lug)

(Anchorage Shear Strength due to Confinement)

NEW FOOTING DESIGN - SMRF 1 AT GRIDLINE I

SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE I (N-S EQ LOADS) - CASE N-1 DETERMINATION OF VERTICAL AND LATERAL LOADS TO FOUNDATION 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

Assumptions

- 1. Existing walls are treated as pinned Columns. Footing is assumed rigid.
- 2. Column loads are located in transverse center of footing; limit of 2 columns w/o flexure.
- 3. Footing has no shear reinforcement.
- 4. Concrete is Normal Weight Concrete with uncoated bars.

1. Lateral Loads and Load Effects

- V = 6.00 kips (Base Shear A4 ASD)
- S = 14.50 feet (Separation between Wall centerlines)

Floor Level	Height (feet)	Loading ID	V_x/V	Shear (Kips)	Force (Kips)	
		5				
		4				
R	10.00	3	0.59	3.56	3.56	F ₂
3	10.00	2	0.83	4.96	1.40	
2	13.00	1	1.00	6.00	1.04	

From summation of moments :

P _{E1} =	-11.26	Kips
P _{E2} =	11.26	Kips

Sum of Wall Weight = 5.02 Kips

2. Vertical Loads and Load Effects

			Floor Tributary Loads					Wall Tributary Loads			
Column	Floor Level	DL (psf)	Length (feet)	Width (feet)	Area (ft ²)	Weight (kips)	WL (psf)	Length (feet)	Height (feet)	Area (ft ²)	Weight (kips)
1	R	20	10.88	2.00	22	0.44	14	10.88	10.00	109	1.52
	3	30	10.88	2.00	22	0.65	14	10.88	10.00	109	1.52
	2	30	10.88	2.00	22	0.65	14	10.88	13.00	141	1.98

 F_5

 F_4

 F_3

Sum of Floor Weight = 1.74 Kips

> P_{D1} = 6.76 Kips

			Floo	r Tributary L	.oads		Wall Tributary Loads				
Column	Floor Level	DL (psf)	Length (feet)	Width (feet)	Area (ft ²)	Weight (kips)	WL (psf)	Length (feet)	Height (feet)	Area (ft ²)	Weight (kips)
2	R	20	10.88	2.00	22	0.44	14	10.88	10.00	109	1.52
	3	30	10.88	2.00	22	0.65	14	10.88	10.00	109	1.52
	2	30	10.88	2.00	22	0.65	14	10.88	13.00	141	1.98
Sum of Floor Weight = 1.74 Kips Sum of Wall Weight = 5.02											

Sum of Floor Weight = 1.74 Kips

> P_{D2} = 6.76 Kips

785 Corbett Avenue, San Francisco **AISC SMRF Calculations** Seismic Retrofit Calculations

SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE I (N-S EQ LOADS) - CASE N-1 ACI 318-11 LOADS AND DESIGN 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

Col

- Footing has no shear reinforcement.
 Concrete is Normal Weight Concrete with uncoated bars.

Footing Parameters :

Footing Size :		
L _x =	17.25	feet
L _y =	2.00	feet
h _f =	3.00	feet
Column Sizes :		
C _{1x} =	0.8	feet (column length)
C _{1y} =	0.7	feet (column width)
x ₁ =	1.38	feet (distance from edge of footing to C1 Centerline)
C _{2x} =	0.8	feet (column length)
C _{2y} =	0.7	feet (column width)
x ₂ =	15.88	feet (distance from edge of footing to C ₂ Centerline)
Note:	S =	= 14.50 feet (Separation between column centerlines)

Foundation Elevation and Plan								
5								
	5 1	0 1	5 20					
-5								
-10								

Project No. 201813.20

Interconnected Slab at Sides:

Note : Slabs at sides are used only to reduce soil bearing pressure; footing is designed to take all loads.

Side : Left Right

t	Inches (Slab Thickness)
Х	Feet (distance to other Slab Edge Support
f'c	Ksi
Conn Type	(D= Dowel, C= Continuous)

	5.9	
Footing Loads :		
V. =	6.00	kips (Base Shear - A4 ASD)

V_y = 0.60 kips

Load Factors : Strength = S (S for Strength, OS for Over-Strength)

$\Omega =$ 3.00 (Overstrength Factor - SMRF)

	Unfactored Loads			Service Loads				Strength Loads			
Load	D	L	EQ	1.0 D + EQ	0.6 D + EQ	L	Ps	1.2 D + 1.4 EQ	0.9 D + 1.4 EQ	1.6 L	Pu
P ₁	7		-11	-4	-7	0	-7	-8	-10	0	-10
P ₂	7		11	18	15	0	18	24	22	0	24

Capacity Factors :	φ _v =	0.75	(Shear)							
	α =	40	(40 for interior	columns, 30 fc	or eq	dge column	s, 20 for corne	er columns)		
<u>Concrete :</u>	$f'_c = f_y = \rho_c =$	3.25 60.00 0.150	Ksi Ksi kip/ft ³							
Reinforcement:	d _c = = =	2.00 3.00 2.00	inches (bar clearance - top) inches (bar clearance - bottom) inches (bar clearance - sides)						Area	
	Orientation	Bar Size	N Bars	Bottom Layer	d	(inches)	Bar Spacing (inches)	Bar Diameter (inches)	Per Bar (in^2)	
Tee Met	x	7	4	х		33.13	6.38	0.88	0.60	
i op Mat	~									
тор мат	y	4	65			33.00	3.16	0.50	0.20	
Pottom Mat	y x	4 7	65 4			33.00 31.63	3.16 6.38	0.50 0.88	0.20	
Bottom Mat	y x y	4 7 4	65 4 65	x		33.00 31.63 33.50	3.16 6.38 3.16	0.50 0.88 0.50	0.20 0.60 0.20	

Note: Used for placing top bars only.

Total (in^2) 2.40 13.00

2.40 13.00

Soil Parameters :

- Soil density = 120 pcf
 - $\sigma_{allow} =$ 2.00 ksf (allowable bearing pressure)

σ_p = 0.30 ksf/ft (Passive Soil Pressure)

μ = 0.25 ksf (Coefficient of Friction) SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE I (N-S EQ LOADS) - CASE N-1 ACI 318-11 LOADS AND DESIGN 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT Project No. 201813.20

2. Lateral Resistance of Foundation

2A. Longitudinal Loading

785 Corbett Avenue, San Francisco AISC SMRF Calculations Seismic Retrofit Calculations

Note: Bearing Stress OK as (N) footing connected to (E)

Footing on 3 sides.

SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE I (N-S EQ LOADS) - CASE N-1 ACI 318-11 LOADS AND DESIGN 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

4. Applied Loading and Demands on Footing - Strength Loads

	Left End	Left Column Centerline	Inflection Point	Right Column Centerline	Right End
Location (feet)	0	1.38		15.88	17.25
Load (kips)	-	-7	-	18	-
V (kina)	0	0		10	
V _L (kips)	0	0		10	
V _R (kips)	-	10	-	-14	-
M _L (kip-ft)	0	0	-	-140	-
M _R (kip-ft)	-	0		-141	

5. Adequacy of Footing - Shear

a) Failure Perimeter

 $b_0 = 2 (b_1 + b_2)$

5A. Check of Flexural/One-Way Shear (ACI 15.5.2 and 11.1.3.1)

Where $b_1 = X_1 + 0.5(C_{2x} + d) \le C_{2x} + d$

b₁ =

 $b_2 =$

 $b_2 = \quad C_{2y} + d \quad < = \quad L_y$

37.25

24.00

inches

inches

-5

-10

feet

inches

inches

inches

inches

inches

inches

and $X_1 =$

and C_{2y} =

= C_{2x} =

d =

d =

L_y =

1.38

16.50

9.00

32.50

8.28

32.50

24.0

b₀ = 98.5 inches

Project No. 201813.20

785 Corbett Avenue, San Francisco AISC SMRF Calculations Seismic Retrofit Calculations

SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE I (N-S EQ LOADS) - CASE N-1 ACI 318-11 LOADS AND DESIGN 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE I (N-S EQ LOADS) - CASE N-1 ACI 318-11 LOADS AND DESIGN 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

785 Corbett Avenue, San Francisco AISC SMRF Calculations Seismic Retrofit Calculations

SPREAD FOOTING DESIGN - SMRF 1 AT GRIDLINE I (N-S EQ LOADS) - CASE N-1 ACI 318-11 LOADS AND DESIGN 785 CORBETT AVENUE, SAN FRANCISCO - SEISMIC RETROFIT

7. Footing Reinforcement Summary

No. 4 Transverse Bottom Bars OK

4 - No. 7 Longitudinal Bottom Bars Ok
ADDITIONAL FOUNDATION REINFORCEMENT FOR RESISTING FIXED BASE COLUMN CONNECTION

1. Parameters

Footing Size :		
$L_x =$	17.25	feet
$L_y =$	2.00	feet
h _f =	3.00	feet

Base Plate Dimensions:

Note:	Base Plate design done elsewhere.				
	N =	16.00	inches	(Base Plate - Length)	
	B =	18.00	inches	(Base Plate - Width)	
	$t_{PL} =$	1.50	inches	(Base Plate - Thickness)	
Column:	W8x67				
	d =	9.00	inches	(Wide Flange - Depth)	
	$b_f =$	8.28	inches	(Wide Flange - Width)	
	$t_{\rm f} =$	0.94	inches	(Wide Flange - Thickness)	
	$Z_x =$	70.1	in ³ (Wi	de Flange - Plastic Section)	
	A =	19.70	in ² (Wic	le Flange - Area)	
	F _y =	50	Ksi		
	<u>Concrete :</u>	$f'_{c} = f_{y} = \rho_{c} =$	3.25 60.00 0.15	Ksi Ksi kip/ft ³	
Ē	Reinforcement:	d _c =	2.00	inches (bar clearance - top)	

	=	2.00	inches (ba	r clearance	- sides)				
								Bar	Area
	Orientation	Bar Size	N Bars	Bottom Layer	d (inches)	Bar Spacing (inches)	Bar Diameter (inches)	Per Bar (in^2)	Total (in^2)
Top Mat	х	7	4	х	33.13	6.38	0.88	0.60	2.40
Bottom Mat	х	7	4	0	31.63	6.38	0.88	0.60	2.40

= 3.00 inches (bar clearance - bottom)

Soil Parameters :	Soil density =	120	pcf		Founda	ation Cross	s-Section
	$\sigma_{allow} =$	2.00	ksf (allowable bearing pressure)	_			
	σ _p =	0.30	ksf/ft (Passive Soil Pressure)				
	μ =	0.25	ksf (Coefficient of Friction)	1 -			
Design Parameters :	φ _v =	0.75	(Shear; ACI 318-11 9.3.2.3)	teet			
	$\Omega =$	3.00	(Overstrength Factor - SMRF)	De Dt			

Width (feet)

d) Flexural reinforcement development length (ACI 12.2.2 and 12.2.5)

i) Development Length (ACI 12.2.2 - 12.2.4) 7

Bar Size =

S - d_b d_s = Where S = 3.22 inches (Bar spacing provided) 0.88 inches d_b =

2.34 d_s = inches inches (Clear spacing provided)

d_c = 2.00 inches (Clear Cover provided)

	(inches)		••
Clear Cover	2.00	d _b = 0.88 inches OK	2 d _b = 1.75 inches <mark>OK</mark>
lear Spacing	2.34	2 d _b = 1.75 inches OK	4 d _b = 3.50 inches NG
	Equations	$l_{d} = \left(\frac{\mathbf{f}_{y} \boldsymbol{\Psi}_{s} \boldsymbol{\Psi}_{t} \boldsymbol{\Psi}_{e} \boldsymbol{\lambda}}{25 \sqrt{\mathbf{f}_{e}}}\right) \mathbf{d}_{b}$	$l_{d} = \frac{3}{40} \left(\frac{f_{y} \Psi_{s} \Psi_{t} \Psi_{c} \lambda}{2.5 \sqrt{f_{c}}} \right) d_{b}$
	Values	$l_d = 52.62 d_b$ $l_d = 46.0 inches$	$l_{d} = 31.57 d_{b}$ $l_{d} = 27.6 \text{inches}$

Lower Limit

Unner Limit

.....

vvnere t _y =	60.00	KSI
$\Psi_{s} =$	1.00	(AGI 12.2.4)
$\Psi_t = \Psi_e = \lambda =$	1.00	
r _c =	3.25	KSI
d _b =	0.88	inches

ii) Excess Reinforcement (ACI 12.2.5)

Provided

с

 $I'_d = I_d \ \rho_r / \rho_w$ Where $I_d =$ 46.0 inches $\rho_r = 0.0042$ (required reinforcement ratio) 0.0055 (reinforcement ratio provided) $\rho_w =$ 34.9 l'_d = inches (Required development length)

iii) Available Anchorage length

$L_{da} = x_f - d_{cs}$	> l' _d	Where x_{f}	= 1.38 = 16.50	feet (Cantilever Length at Column Centerline) inches
		d _{cs}	= 2.00	inches (bar clearance - sides)
	L _{da} =	14.50 inches		

Use Additional 3 - # 7 Bars for Column Flexure; Use 0 in Development Length beyond Ends of Base Plates - Bend Bars at Footing Ends and connect T and B bars together to form Cage.

3. Foundation Demands at Fixed Base Columns

